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A 3D Principal Component Analysis on VCD spectra
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Fig. S1 Comparison of the enantiomers’ PCA transformed spectra, from top to bottom B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-31++G(d,p),
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B3PW91/6-31++G(d,p), B3LYP/6-311++G(2d,2p), B3PW91/6-311++G(2d,2p).
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B Hyperparameters of the optimised models

LogReg | 1.2 regularisation, C 1000
NB | N.A.
SVM | Linear Kernel, tolerance 0.001, C 0.1
kNN | Neighbours 3, weighted Manhattan distance
RF | Trees 200, max tree depth 20
FNN | Hidden layers 2, neurons 100 and 20 respectively, optimiser Adam, L2
regularisation alpha 0.001, maximal iterations 500

Table S1 Optimised hyperparameter for the supervised machine learning models.

C Logistic regression weights for weak & strong regularisation
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Fig. S2 Influence of regularisation strength and method for logistic regression on the classification accuracy and the coefficients.



D Influence of database imbalance w.r.t substitutional populations

At this stage, it is interesting to see to what extent the predictive power is dependent on the exact substituents. The misclassified
molecules of 10 separate RF training cycles using the same training method as before (9:1 split, 8 cm~! sampling interval) were
identified and the average misclassification for every substituent at every position was determined. This procedure was repeated for
FNN (9:1 split, 8 cm~! step size), but with 100 separate training cycles instead, in order to guarantee the values’ statistical significance
(as the misclassification is about 10 times smaller than that of RF). Through comparison of these misclassifications, depicted in Figure
S3, a noticeable difference in predictability is manifested for the different substituents and positions; the general trend appears similar
for both RF and FNN, which can be attributed to the difficult non-characteristic influences these substitutions have on the VCD spectrum
and structural underrepresentation of certain groups/combinations in the dataset (depicted in Figure 2). However, it remains difficult
to clearly reveal the extent to which one dominates over the other.
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Fig. S3 Relative misclassification of the spectra for a certain substituent at each position 1-6 separately for feedforward neural network(top) and
fandom forest(bottom).



E Influence of starting point on Classification Accuracy for 24 cm™!

(B3PW091/6-31++G(d,p))

sampling interval

A different starting point or SI can lead to exclusion of a wavenumber characteristic for the AC. The drop in accuracy observed from
an SI of 24 cm™ 1 could be caused by missing a specific wavenumber which was present in the spectra with an SI of 8 cm™ 1, instead
of a loss in information. We investigated this by training and evaluating on spectra of SI 24 cm™ | with three different starting point
separately, after which their performances were compared to those obtained for SIs of 16 cm~! and 32 em~!. As can be observed in
Figure S4, the CA does depend on the exact starting point. However, the influence of changing the SIto 16 ecm™! or 32 em~! still
remains larger than the starting point.
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Fig. S4 Influence of starting point (SP) on the classification accuracy for the 24 cm~! sampling interval for (a) random forest and (b) feedforward
neural network. Starting point A, B and C are 800, 808 and 816 cm™1 respectively. The different train-validation split ratios are coloured as described
in the legend.



F Classification Accuracy for spectra with bandwidth of 15 cm™!
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Fig. S5 Classification accuracy of the spectra with bandwidth 15 cm~!, for (a) random forest and (b) feedforward neural network. The different
train-validation split ratios are coloured as described in the legend.
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G External validation of all ML models with other functional/basis set for 0.5 cm™' sampling

interval

In order to evaluate the stability the performance of the different ML models originally considered are with regards to the choice of
functional and basis set, the mean CA and corresponding standard deviation over the different levels of theory are illustrated in Figure
S6. We observe that the performance of LogReg, NB and, in particular, SVM is noticeably dependant on the level of theory, even when
the a large majority of the data is provided for training.
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Fig. S6 Mean Classification accuracy of the spectra for the different ML models over all combinations of the B3LYP and B3PW091 functionals, with
the 6-31G(d)6-31++G(d,p)/ 6-311++G(2d,2p) basis sets. The different data split ratios are coloured as described in the legend.



H External validation of performance for RF and FNN with other functional/basis set

To investigate to which degree the choice in functional and basis set will impact the performance of both RF and FNN, each model
(with the same hyperparameters as described in Table S1) is trained on the spectra of the different levels of theory separately. This
procedure is repeated for all the different SIs and data splits. Their mean performance and corresponding standard deviation over the
six different levels of theory are determined and illustrated in Figure S7. As long as the SI remains similar or smaller than the FWHM
and the majority of the data is provided for training, the standard deviation is negligible. As an example, the standard deviations for
an SI of 8 em~! and a data split of 9:1, are 0.003 and 0.0004 for RF and FNN respectively. For an SI value of 24 cm~! and 32 cm~!,
the standard deviation clearly increases, which strengthens our suggestion to keep the SI value similar to the FWHM. The standard
deviation also increases when a smaller number of spectra is present in the training set. This is likely caused by the smaller reliability
of the CA values the individual levels of theory, as less training data with the same model complexity allows for more overfitting.
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Fig. S7 Mean Classification accuracy of the spectra for (a) random forest and (b) feedforward neural network over all combinations of the B3LYP
and B3PWO1 functionals, with the 6-31G(d)6-31++4G(d,p)/ 6-311++G(2d,2p) basis sets.



| Feature ranking for RF trained on various functional/basis set combinations

The question arises whether the similar performances discussed in section H and G are due to the robustness of the ML methods or the
ML models themselves are identical. In this section, the workflow described in section 3.4 is repeated for the aforementioned remaining
combinations of functional and basis set. The resulting ranking scores of the spectral features (depicted in figure S8) do differ for the
different levels of theory, even when accounting for the horizontal shift of the vibrations’ frequencies. Hence, the RF models extract AC
related information in a different manner.
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Fig. S8 Random forest ranking score of the spectral features for the prediction of the chirality of the compounds for the different sampling intervals
and combinations of functional and basis set. From top to bottom the sampling interval equals 0.5, 4, 8, 16, 24, 32 cm~!.



J  Performance and structure of shallow decision trees trained on various functional/basis set

To further exemplify the influence of the level of theory on how ML models extract AC related information from the spectra, shallow
decision trees (depth 2) were trained on all spectra (SI 8 cm~!) for a specific level of theory. As illustrated in figure S9, the criteria
(i.e. wavenumber and corresponding intensity) used for the criterion in each decision node vary, especially so for the second layer of

decision nodes.
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Fig. S9 Shallow decision trees trained on VCD spectra (SI 8 cm~!) of different levels of theory as denoted in the figure. The nodes are coloured
according to their purity, with a blue-white-red gradient, with the dominant chirality class present in each node denoted as 1 ((+)-a-pinene) or 2

((-)-a-pinene).

intensity criterion used in each decision node.

For each node the absolute and relative population of the dominant class is given, along with the corresponding wavenumber and



