Supporting information for

Computational discovery of PtS₂/GaSe van der Waals heterostructure for solar energy

applications

Rui Xiong¹, Rong Hu¹, Yinggan Zhang², Xuhui Yang¹, Peng Lin¹, Cuilian Wen¹, Baisheng Sa^{1,*} and

Zhimei Sun^{3,**}

¹Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China

² College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China

³School of Materials Science and Engineering, and Center for Integrated Computational Materials

Science, International Research Institute for Multidisciplinary Science, Beihang University, Beijing

100191, P. R. China

*Corresponding Author: <u>bssa@fzu.edu.cn</u> (B. Sa).

**Corresponding Author: <u>zmsun@buaa.edu.cn</u> (Z. Sun).

Materials properties	PtS ₂ /GaSe	CIGS	ZnO
Thickness [µm]	0.002	2	0.05
Bandgap [eV]	1.81	1.1	3.37
Electron affinity [eV]	4.4	4.5	4.6
Dielectric permittivity	5.2	13.6	9
Density of states in CB [cm ⁻³]	6.39×10 ¹⁸	2.2×10^{18}	2.2×10^{18}
Density of states in VB [cm ⁻³]	2.52×10^{19}	1.8×10^{19}	1.8×10^{19}
Thermal velocity of electron [cm/s]	1.86×10^{7}	1×10^{7}	1×10^{7}
Thermal velocity of hole [cm/s]	1.17×10^{7}	1×10^{7}	1×10^{7}
Electron mobility $[cm^2/(V s)]$	3168	100	150
Hole mobility $[cm^2/(V s)]$	2188	25	25
Donor concentration [cm ⁻³]	1×10^{19}	0	1×10^{17}
Acceptor concentration [cm ⁻³]	0	2×10 ¹⁶	0
Absorption coefficient [cm ⁻¹]	file	SCAPS	SCAPS
Radiative recombination coefficient [cm ⁻³ /s]	1.0×10 ⁻¹⁰	1.0×10 ⁻¹⁰	1.0×10 ⁻¹⁰

Table S1. The parameters for the solar cell simulation

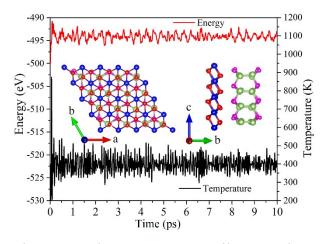


Figure S1. Evolution of total energy and temperature as well as snapshot structure from AIMD simulations of $PtS_2/GaSe$ heterostructure.

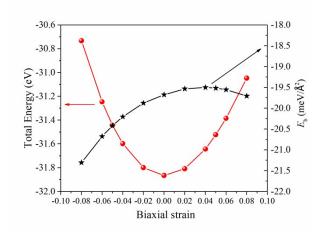


Figure S2. The total energy and binding energy (E_b) of PtS₂/GaSe heterostructures as function of biaxial strain.

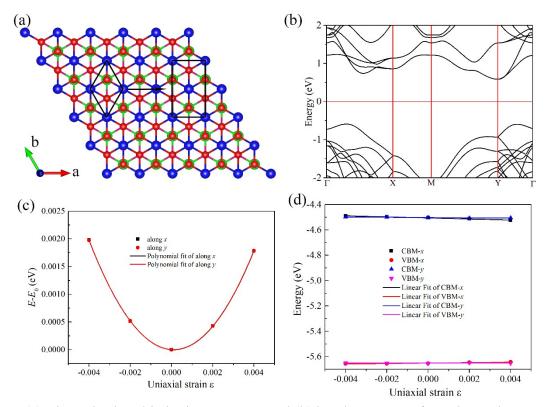


Figure S3. (a) The orthorhombic lattice structure and (b) band structure of $PtS_2/GaSe$ heterostructure. (c) Total energy shift $(E - E_0)$ and (d) band edge positions of $PtS_2/GaSe$ as a function of the uniaxial strain ε along both the zigzag (x) and armchair (y) directions by using PBE functional.

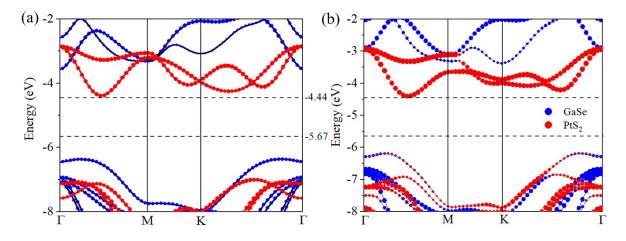


Figure S4. (a) The band structures of PtS_2 (red line) and GaSe (bule line) monolayers constrained in the $PtS_2/GaSe$ heterostructure lattice constants based on the HSE06 functional. (b) Layered projected band structure of $PtS_2/GaSe$ heterostructure, in which red and blue balls represent the contribution of up-layer (PtS_2) and down-layer (GaSe)

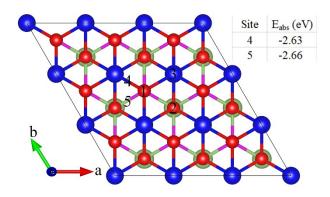


Figure S5. The possible absorption sites of H atom on the PtS_2 surface.

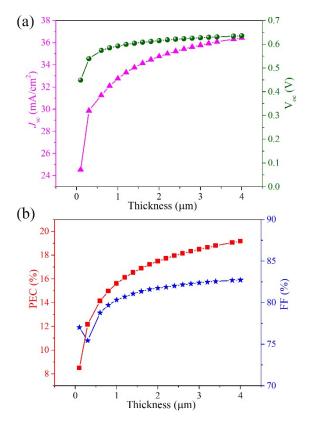


Figure S6 (a) The short-circuit current (J_{sc}) and open-circuit voltage (V_{oc}) , (b) power efficiency conversion (PEC) and fill factor (FF) as function of CIGS thickness.

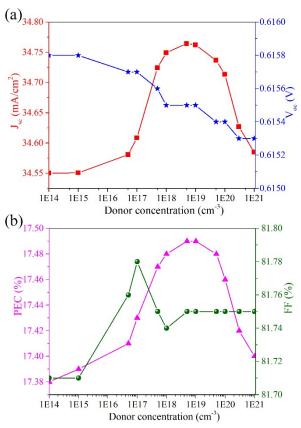


Figure S7 (a) The short-circuit current (J_{sc}) and open-circuit voltage (V_{oc}), (b) power efficiency conversion (PEC) and fill factor (FF) as function of PtS₂/GaSe carrier concentration.