Supporting Information

Trion dynamics and charge photogeneration in MoS₂ nanosheets

prepared by liquid phase exfoliation

Yuan-Yuan Yue,[†] Le-Yi Zhao,[†] Dan-Ao Han,[†] Lei Wang,^{*,†} Hai-Yu Wang,^{*,†} Bing-Rong Gao,[†] and Hong-Bo Sun[‡]

[†]State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China. [‡]State Key Laboratory of Precision Measurement Technology and Instruments. Department of

[‡]State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China.

Figure S1. The schematic of femtosecond transient absorption setup.

Figure S2. The schematic of multilayer MoS_2 band structure. The band-nesting nature of C-exciton state still calls for deep investigations in future.

Figure S3. The AFM images of (a) LPE-MoS₂ nanosheets, CVD grown (b) 7L-, (c) 3L- and

(d) 1L- MoS₂ films.

Figure S4. The absorption spectra before (black) and after (red) a background removal.

Figure S5. Schematic illustration for the spectral overlapping of exciton states in TA experiments. (a) Three Lorentzian functions corresponding to the exciton resonance peaks of X_A , X_B and X_C states without pump are shown in grey curves. After pump, those Lorentzian curves are broadened (color curves). (b) The TA spectra are fitted by adjusting the parameters (the linewidths) of those Lorentzian functions.

Figure S6. Multi-peak fitting for the steady-state absorption spectra (black line, its background has been subtracted) of CVD grown (a) 7L, (b) 3L and (c) 1L MoS₂ films by absorption Lorentzian functions. The peak shifting kinetics of X_A , X_B and X_C states as a function of delay time for CVD grown (d) 7L, (e) 3L and (f) 1L MoS₂ films.

Figure S7. Peak broadening in LPE-MoS₂ nanosheets. TA spectra probed at initial delay times are fitted by summarizing the differential spectra of absorption Lorentzian with only varying peak widths for all the three exciton states under 400 nm excitation with the pump density of (a) 145, (b) 295 and (c) 455 μ J/cm², respectively. At the pump density of 455 μ J/cm², the fitted curve has already presented obvious deviations in comparison with the initial TA spectrum, even for the GBS peak of X_A. At a larger pump density condition, like 885 μ J/cm², this fitting method does not work, since the deviations are too large to accept for fitting the initial TA spectrum by only considering peak broadening effect. This could be due to that for high pump density conditions, the other quasiparticles including trions (like X_A⁻) and charges (like C-charges) are also responsible for the initial TA spectrum of LPE-MoS₂ nanosheets as shown in Figure 4a.

Figure S8. Peak broadening of X_A , X_B and X_C states as a function of pump density at the initial decay time (maximum values).

Figure S9. Normalized dynamics of X_A states under relatively low pump densities for (a) LPE-MoS₂ nanosheets, CVD grown (b) 7L-, (c) 3L- and (d) 1L-MoS₂ films. Due to the overlapping between the negative GSB signals and large positive signals at the X_A states of LPE-MoS₂ nanosheets and CVD grown 7L-MoS₂ films, it is hard to fit a satisfactory result for the corresponding X_A dynamics. It is the same reason that we cannot fit the X_A dynamics of all samples under relatively high pump densities.

Figure S10. Normalized dynamics of X_C and C-charge states under relatively low pump densities for (a) LPE-MoS₂ nanosheets, CVD grown (b) 7L-, (c) 3L- and (d) 1L-MoS₂ films.

Table S	1. Excitor	n binding	energy	of	LPE-MoS ₂	nanosheets,	CVD	grown	7L,	3L	and	1L
MoS ₂ fil	ms.											

	X _A (meV)	X _B (meV)	X _C (meV)
LPE-MoS ₂	77	76	-70
7L-MoS ₂	60	70	-76
3L-MoS ₂	20	44	-8
1L-MoS ₂	22	20	-4

Table S2. Best–Fit Parameters of Peak Broadening for X_A , X_B and X_C States in MoS₂ Nanosheets by a Multi-Exponential Function, $I(t) \propto \Sigma_i A_i \exp(-t/\tau_i)$, at a Pump Density of 145 μ J/cm² in Figure 3.

Probe	$\tau_{decay 1}$ (ps)	$\tau_{decay 2}$ (ps)
X _A	0.39±0.02 (92%)	2140±107 (8%)
X_{B}	0.57±0.02 (88%)	1460±73 (12%)
X _C	0.13±0.01 (80%)	6580±329 (20%)

Sample	Probe	$ au_{arising}\left(ps ight)$	$\tau_{decay 1} (ps)$	$\tau_{decay 2}$ (ps)	$ au_{decay-avg}$ (ps)
MoS ₂ nanosheets	X _A -	0.24 ± 0.01	0.87±0.04 (69%)	607±30 (31%)	189
7L-MoS ₂	X _A -	0.69 ± 0.03	280±14	-	280
3L-MoS ₂	X _A -	0.66 ± 0.03	22±1.1	-	22
1L-MoS ₂	X _A -	0.48 ± 0.02	38±1.9	-	38

Table S3. Best–Fit Parameters of X_A^- States in MoS₂ Materials by a Multi-Exponential Function, $I(t) \propto \Sigma_i A_i \exp(-t/\tau_i)$, at a Relatively Low Pump Density in Figure 5.

Sample	Probe	$\tau_{arising}\left(ps\right)$	$\tau_{decay 1}$ (ps)	$\tau_{decay 2} (ps)$	$\tau_{decay 3}$ (ps)	$\tau_{decay-avg}\left(ps\right)$
MoS ₂ nanosheets	X _C	-	0.29 ± 0.01 (69%)	1483 ± 74 (31%)	-	460
	C-charge	3.09 ± 0.1 5	213 ± 10	-	-	213
7L-MoS ₂	X _C	-	0.12 ± 0.01 (87%)	295±15 (13%)	-	38
	C-charge	$1.58 \pm 0.0 \\ 8$	324±16	-	-	324
3L-MoS ₂	X _C	-	3.80 ± 0.19 (40%)	62±3.1 (50%)	829±41 (10%)	115
	C-charge	$0.87 \pm 0.0 \\ 4$	58±2.9	-	-	58
1L-MoS ₂	X _C	-	5.38 ± 0.27 (40%)	47±2.4 (50%)	469±23 (10%)	73
	C-charge	$0.76 \pm 0.0 \\ 4$	32±1.6 (71%)	194 ± 10 (29%)	-	79

Table S4. Best–Fit Parameters of X_C and C-Charge States in MoS₂ Materials by a Multi-Exponential Function, $I(t) \propto \Sigma_i A_i \exp(-t/\tau_i)$, at a Relatively Low Pump Density in Figure S10.

Sample	Probe	$\tau_{arising}\left(ps\right)$	$\tau_{decay 1}$ (ps)	$\tau_{decay 2} (ps)$	$\tau_{decay 3} (ps)$	$\tau_{decay-avg} \left(ps \right)$
MoS ₂ nanosheets	X _C	-	1.34 ± 0.07 (52%)	7.86 ± 0.39 (17%)	3335 ± 167 (31%)	1036
	C-charge	1.85 ± 0.05	116 ± 5.8 (37%)	568 ± 28 (63%)	-	400
7L-MoS ₂	X _C	-	0.31 ± 0.005 (62%)	19±0.8 (13%)	450±15 (25%)	115
	C-charge	0.45 ± 0.01	179±9 (49%)	512±26 (51%)	-	349
3L-MoS ₂	X _C	-	1.02 ± 0.05 (27%)	109 ± 4.4 (64%)	1483±74 (9%)	204
	C-charge	1.21 ± 0.05	127 ± 6.3 (94%)	2077 ± 104 (6%)	-	244
1L-MoS ₂	X _C	-	1.96 ± 0.10 (28%)	74±3.3 (72%)	-	54
	C-charge	1.34 ± 0.07	79±4.0	-	-	79

Table S5. Best–Fit Parameters of X_C and C-Charge States in MoS₂ Materials by a Multi-Exponential Function, $I(t) \propto \Sigma_i A_i \exp(-t/\tau_i)$, at a Relatively High Pump Density in Figure 6.