This copy of the ESI replaces the previous version published on 03/11/2021

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Hofmeister Effects on Protein Stability are dependent on the Nature of the Unfolded State

Sara S. Ribeiro^{a‡}, Tarsila G. Castro^b, Cláudio M. Gomes^c, João C. Marcos^{a*}

^a Centre of Chemistry, University of Minho, Campus de Gualtar, Braga, Portugal
^b Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
^c Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal

Figure S1. Radial distribution functions of dihydrogen phosphate $[H_2PO_4]^-$ (black line) and monohydrogen phosphate $[HPO_4]^{2-}$ (red line) in the vicinity of positive side (lysine (Lys) and arginine (Arg)) chain residues for the native (**a**) and thermally (**b**) unfolded states during 50 ns of MD simulation.

Figure S2. Spectra of heme group in 0.05 M phosphate buffer pH 7 (or reference) and in the presence of each studied salt at 0.3 M for the folded (**a**), thermal and chemically (**b**) unfolded myoglobin.

Figure S3. (a) ΔH_U as function of T_m plots for each salt obtained from the myoglobin thermal denaturation. The slope of these plots defines ΔC_p^* , the change in the heat capacity of unfolding induced by the salt at 0.3 M. No linear fit was successful (r² were all below 0.157). (b) m-values determined from chemical denaturation of myoglobin in the presence of each salt for the different concentrations. Similar to thermal unfolding, no linear relation was found, with all r² below 0.562.

Figure S4. Radial distribution functions of cations (Na⁺ and NH₄⁺) and anions (Cl⁻ and SO₄²⁻) in the vicinity of aliphatic (**a**) and aromatic (**b**) side-chains of myoglobin during the last 60ns of MD simulation in the four different conformations investigated. Red refers to NaCl, green to Na₂SO₄ and blue to (NH₄)₂SO₄.

Figure S5. Average number of hydrogen bonds between myoglobin backbone (**left**) or sidechain (**right**) and SO_4^{2-} (green from Na₂SO₄) (blue from (NH₄)₂SO₄) or NH₄⁺ during the last 60 ns of simulation.

Figure S6. (a) Root mean square deviation (RMSD) of chemically unfolded myoglobin in water and in the presence of each salt at 0.3 M over the 100 ns of simulation. (b) Average radius of gyration (Rg) of chemically unfolded myoglobin during the last 60 ns of simulation in the absence or in the presence of each salt. (c) Far-UV spectra of urea-unfolded myoglobin with NaCl, $(NH_4)_2SO_4$ and Na_2SO_4 at 0.3 M. (d) Average number of hydrogen bonds between myoglobin backbone/sidechain and SO_4^{2-} (green from Na_2SO_4) (blue from $(NH_4)_2SO_4$) or NH_4^+ in U_{Urea} during the last 60 ns of simulation.

	[Salt] (M)	Buffer	NaCl	Na_2SO_4	$(NH_4)_2SO_4$
	0.05		65.6	65.3	71.2
	0.1	69.3	70.2	70.0	77.6
\mathbf{D}	0.15		71.0	70.5	75.0
<i>Reversibility (%)</i>	0.2		70.2	65.5	69.9
	0.25		72.5	63.9	62.0
	0.3		72.4	62.7	62.1

Table S1. Reversibility of myoglobin thermal unfolding calculated for each salt condition.

Table S2. Reversibility of chemical denaturation experiments in buffer and at 0.3 M of all salts.

	Buffer	NaCl	Na_2SO_4	$(NH_4)_2SO_4$
Reversibility (%)	80.0	71.3	79.5	77.8

Table S3. Number of ions and water molecules used in MD simulations.

	System	Water	Cation	Anion	Urea	Total Nº of molecules [*]	Final volume (nm ³)	
N	Water	10804	2			10806		
	NaCl	10676	66	64		10806	250.00	
	Na ₂ SO ₄	10473	130	64		10667	330.90	
	$(NH_4)_2SO_4$	10371	130	64		10565		
	Water	13797				13797		
	NaCl	13637	80	80		13797	404.01	
UThermal	Na ₂ SO ₄	13372	160	80		13532	404.91	
	$(NH_4)_2SO_4$	13208	160	80		13448		
$U_{\it Urea}$	Water	15190			3977	19167		
	NaCl	14876	157	157	3977	19167		
	Na_2SO_4	14462	314	157	3977	19090	868.99	
	$(NH_4)_2SO_4$	14307	314	157	3977	18755		
U_{Fully}	Water	48456				48456		
	NaCl	47912	272	272		48456	1509 (2)	
	Na ₂ SO ₄	47040	544	272		47856	1508.62	
	$(NH_4)_2SO_4$	46509	544	272		47325		

*This number of molecules does not include myoglobin

_

Table S4. $T_m(K)$, ΔH_U (kJ mol⁻¹), $C_m(M)$ and m-values (kJ mol⁻¹ M⁻¹) determined for thermal and chemical denaturation with UV-VIS in buffer (or reference) and each salt condition (Average and standard deviation for 3 replica).

	[Salt] (M)	NaCl	Na_2SO_4	$(NH_4)_2SO_4$	Buffer
	0.05	351.62 ± 0.11	351.65 ± 0.37	351.92 ± 0.01	
	0.1	351.12 ± 0.16	350.97 ± 0.27	351.28 ± 0.10	
T_m	0.15	350.84 ± 0.07	350.94 ± 0.19	350.86 ± 0.04	
	0.2	350.78 ± 0.01	350.67 ± 0.12	350.39 ± 0.19	352.44 ± 0.28
	0.25	350.33 ± 0.09	350.73 ± 0.06	349.84 ± 0.16	
	0.3	350.20 ± 0.13	351.31 ± 0.35	349.70 ± 0.25	
	0.05	528.49 ± 22.18	515.79 ± 13.16	533.94 ± 3.47	
	0.1	524.99 ± 18.20	491.62 ± 1.29	514.92 ± 4.74	
\mathbf{H}_U	0.15	534.80 ± 14.96	527.44 ± 20.56	531.61 ± 4.35	
IV	0.2	530.86 ± 3.50	504.39 ± 6.13	520.29 ± 6.54	547.81 ± 18.33
	0.25	534.68 ± 21.43	504.27 ± 17.43	512.55 ± 16.33	
	0.3	538.28 ± 8.77	500.95 ± 8.37	509.90 ± 3.47	
	0.05	5.31 ± 0.03	5.30 ± 0.01	5.22 ± 0.02	
	0.1	5.16 ± 0.01	5.35 ± 0.05	5.13 ± 0.03	
, E	0.15	5.12 ± 0.01	5.63 ± 0.04	5.32 ± 0.03	
0	0.2	5.13 ± 0.03	5.66 ± 0.05	5.39 ± 0.01	$\textbf{5.48} \pm 0.02$
	0.25	5.14 ± 0.01	5.89 ± 0.03	5.40 ± 0.02	
	0.3	5.13 ± 0.03	5.88 ± 0.02	5.54 ± 0.04	
	0.05	8.89 ± 0.14	9.41 ± 0.99	9.60 ± 0.25	
e	0.1	9.35 ± 0.22	8.69 ± 0.30	9.48 ± 0.67	
alu	0.15	8.99 ± 0.84	8.16 ± 0.36	8.69 ± 0.79	$\textbf{8.65} \pm 0.28$
1-N	0.2	8.74 ± 0.30	7.87 ± 0.51	9.77 ± 0.58	
ŭ	0.25	8.30 ± 0.59	7.80 ± 0.55	8.10 ± 0.62	
	0.3	8.43 ± 0.70	6.53 ± 0.37	9.44 ± 0.57	

Table S5. Linear fitted values determined for $\Delta\Delta G_U$ (Salt 1- Salt2) vs salt concentration plots (see Fig. 3a, main text).

		Slope	r^2
Thermal Unfolding	$Na_2SO_4 - NaCl$	1.29 ± 0.29	0.856
	$Na_2SO_4 - (NH_4)_2SO_4$	2.16 ± 0.27	0.928
Chemical Unfolding	Na ₂ SO ₄ – NaCl	5.69 ± 0.81	0.941
	$Na_2SO_4 - (NH_4)_2SO_4$	2.94 ± 0.66	0.759