Electronic Supplementary Information for:

Dipolar Repulsion in α-Halocarbonyl Compounds Revisited

Daniela Rodrigues Silva,^{a,b} Lucas de Azevedo Santos,^{a,b} Trevor A. Hamlin,^a F. Matthias

Bickelhaupt,*a,c Matheus P. Freitas,*b and Célia Fonseca Guerra*a,d

- ^a Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands) E-mail: f.m.bickelhaupt@vu.nl, c.fonsecaguerra@vu.nl
- ^b Departamento de Química, Instituto de Ciências Naturais Universidade Federal de Lavras, 37200-900, Lavras-MG (Brazil) E-mail: matheus@ufla.br
- ^c Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands)
- ^d Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden (The Netherlands)

Table of contents

Table S1. Homolytic bond dissociation energies (in kcal mol⁻¹) for the reaction OHC–CH₂X \rightarrow OHC[•] + •CH₂X (X = F, Cl, Br, and I).

Figure S1. Rotational energy profile as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). a) fully relaxed rotation around the C–C bond, and b) energy decomposition analysis (EDA) for rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å. Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S2. a) Activation strain (ASA) and b) energy decomposition analyses (EDA) of the fully relaxed rotation around the C–C bond along with c) key bond length variations as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). Energy terms and distances relative to the *syn* conformer, $\Delta\Delta E$ and Δr , computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S3. Energy decomposition analysis (EDA) for rigid rotation around the C–C bond as a function of the $\phi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). a) rigid rotation in *syn* geometry, b) rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å (as in the *syn*-iodoacetaldehyde), c) rigid rotation in *anti*-geometry, and d) rigid rotation in *anti*-geometry but with C–C distance set to 1.52 Å (as in the *anti*-fluoroacetaldehyde). Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

Table S2. EDA terms (in kcal mol⁻¹) of the main conformations of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I) in the rigid rotation around the C–C bond in *syn* geometry but with C–C distance set to 1.51 Å.

Figure S4. Key closed-shell–closed-shell overlaps between fragment molecular orbitals (FMOs, isosurface at 0.03 a.u.) in the *syn* and *anti*-conformers depicted as quantitative 3D plots for the chloroacetaldehyde analogue. Analysis in rigid rotation in *syn* geometry but with C–C bond distance set to 1.51 Å, computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S5. a) Electrostatic interaction energy components, b) Pauli repulsion and key occupied– occupied orbital overlaps, and c) orbital interactions and key unoccupied–occupied orbital overlaps as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). Analysis in rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å. Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

Table S3. Orbital energy gap (in eV) and overlap of key unoccupied–occupied orbital interactions of haloacetaldehydes OHC– CH_2X (X = F, Cl, Br, and I).

Figure S6. Electrostatic interaction between oxygen and halogen atoms for the C=O•••X–C colinear approach of the OHC• and CH₂X• fragments. a) ΔV_{elstat} as a function of the $r_{O•••X}$ distance (vertical lines indicate $r_{O•••X}$ separation in the corresponding haloacetaldehyde); b) density contours from –0.9 to 0.9 Bohr⁻³ for OHC• and CH₂X• fragments (X = F, I for upper and lower, resp.). Computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S7. Schematic diagram of the valence configuration of the O^{••} and X[•] (X = F and I) atoms used for the electrostatic interaction analysis shown in Figure 6c,d in the main text, in which the bare atoms approach each other along the z axis. Note that this reflects the situation for the interaction between the full OHC[•] and CH₂X[•] fragments, the parts of which that have been cut away, here, in the O^{••} and X[•] systems, are shown in faded grey.

Table S4. Syn relative to anti electrostatic interaction $\Delta\Delta V_{elstat}$ energy components (in kcal mol⁻¹) of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I).

Table S5. Cartesian coordinates (Å), energies (kcal mol⁻¹), and the number of imaginary vibrational frequencies (N_{imag}) of the stationary points in the energy profiles for rotation around the C–C bond of haloacetaldehydes OHC–CH₂X and the open-shell HOC[•] and CH₂X[•] fragments (X = F, Cl, Br, and I), computed at ZORA-BP86-D3(BJ)/QZ4P.

Χ	$\mathbf{CCSD}(\mathbf{T})^a$		BP86-D3(BJ) ^b	
	syn	anti(clinal) ^c	syn	anti(clinal) ^c
F	85.4	86.7	81.6	82.5
Cl	83.2	84.3	79.5	80.4
Br	84.3	85.8	81.2	82.6
Ι	86.0	88.0	81.8	83.8

Table S1. Homolytic bond dissociation energies (in kcal mol⁻¹) for the reaction OHC–CH₂X \rightarrow OHC + CH₂X (X = F, Cl, Br, and I).

^{*a*} Computed at ZORA-CCSD(T)/ma-def2-QZVPP¹//ZORA-BP86-D3(BJ)/QZ4P, quasi-restricted orbitals (QROs) were used for open-shell fragments; computations at *ab initio* level were carried out using ORCA². ^{*b*} Computed at ZORA-BP86-D3(BJ)/QZ4P. ^{*c*} The *anti*-conformer is the global energy minimum conformation for X = F, whereas the *anticlinal* conformation is the lowest in energy for X = Cl, Br, and I.

 ⁽a) E. van Lenthe, R. van Leeuwen, E. J. Baerends and J. G. Snijders, *Int. J. Quantum Chem.*, 1996, 57, 281;
 (b) E. van Lenthe, E. J. Baerends and J. G. Snijders, *J. Chem. Phys.*, 1994, 101, 9783;
 (c) K. Raghavachari, G. W. Trucks, J. A. People and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, 157, 479;
 (d) D. A. Pantazis, X. Chen, C. R. Landis and F. Neese, *J. Chem. Theory*, 2008, 4, 908.
 (e) J. Zheng, X. Xu and D. G. Truhlar, *Theor. Chem. Acc.*, 2011, 128, 295.

² F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73.

Figure S1. Rotational energy profile as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC– CH₂X (X = F, Cl, Br, and I). a) fully relaxed rotation around the C–C bond, and b) energy decomposition analysis (EDA) for rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å. Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S2. a) Activation strain (ASA) and b) energy decomposition analyses (EDA) of the fully relaxed rotation around the C–C bond along with c) key bond length variations as a function of the $\phi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). Energy terms and distances relative to the *syn* conformer, $\Delta\Delta E$ and Δr , computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S3. Energy decomposition analysis (EDA) for rigid rotation around the C–C bond as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). a) rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å (as in the *syn*-iodoacetaldehyde), c) rigid rotation in *anti*-geometry, and d) rigid rotation in *anti*-geometry but with C–C distance set to 1.52 Å (as in the *anti*-fluoroacetaldehyde). Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

X	$\mathbf{\Phi}^{b}$	$\Delta E_{\rm int}$	$\Delta V_{ m elstat}$	$\Delta V_{\text{elstat}}(n_{\text{A}}n_{\text{B}})^{c}$	$\Delta V_{\rm elstat}(\rho_{\rm A} n_{\rm B})^c$	$\Delta V_{\text{elstat}}(n_{\text{A}}\rho_{\text{B}})^{c}$	$\Delta V_{ m elstat}(ho_{ m A} ho_{ m B})^c$	$oldsymbol{f}^{d}$	ΔE_{Pauli}	$\Delta E_{\rm oi}$	$\Delta E_{\rm disp}$
	0	-90.8	-181.1	36,222.3	-36,360.9	-36,304.7	36,263.2	-0.9	324.5	-232.5	-1.6
_	60	-86.1	-181.8	35,711.7	-35,832.6	-35,791.5	35,731.6	-0.8	329.2	-231.9	-1.6
F	120	-88.4	-182.3	35,032.5	-35,125.6	-35,102.8	35,014.5	-0.8	328.2	-232.6	-1.6
	180	-91.2	-182.3	34,813.2	-34,892.5	-34,874.5	34,772.7	-1.1	325.2	-232.4	-1.6
	0	-90.5	-179.6	47,864.1	-48,044.2	-47,968.1	47,970.0	-1.2	327.9	-236.5	-2.3
	60	-87.2	-179.9	46,897.5	-47,041.3	-46,997.6	46,962.9	-1.3	332.1	-237.0	-2.3
Cl	120	-89.6	-180.2	45,618.0	-45,704.6	-45,707.3	45,615.0	-1.0	330.8	-238.0	-2.3
	180	-90.3	-180.1	45,218.7	-45,276.8	-45,300.9	45,180.2	-1.2	328.5	-236.4	-2.3
	0	-91.7	-180.4	75,667.9	-75,955.0	-75,793.8	75,901.8	-1.2	330.3	-239.0	-2.6
	60	-89.2	-180.6	73,665.4	-73,875.7	-73,787.0	73,818.2	-1.4	334.0	-240.1	-2.5
Br	120	_91.4	-180.6	71,006.3	-71,095.1	-71,114.5	71,024.2	-1.3	332.7	-241.0	-2.5
	180	-91.2	-180.5	70,183.5	-70,212.0	-70,283.3	70,132.9	-1.5	330.7	-238.8	-2.5
	0	-92.4	-181.8	100,432.6	-100,805.7	-100,584.4	100,777.3	-1.4	335.1	-242.8	-2.9
-	60	-90.7	-181.5	97,469.6	-97,727.4	-97,618.0	97,696.0	-1.6	338.1	-244.4	-2.8
I	120	-92.7	-181.3	93,535.1	-93,612.4	-93,672.2	93,569.6	-1.3	336.6	-245.3	-2.8
	180	-91.3	-181.2	92,318.6	-92,306.9	-92,448.7	92,257.3	-1.4	335.1	-242.4	-2.8

Table S2. EDA terms (in kcal mol⁻¹) of the main conformations of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I) in the rigid rotation around the C–C bond in *syn* geometry but with C–C distance set to 1.51 Å.^{*a*}

^{*a*} Computed at ZORA-BP86-D3(BJ)/QZ4P. ^{*b*} The $\varphi_{O=C-C-X}$ dihedral angle (where X = F, Cl, Br, and I). ^{*c*} Sub index A for the OHC[•] fragment and B for the CH₂X[•] fragment. ^{*d*} Fitting for incompleteness of the ΔV_{elstat} term due to the use of density fitting.

Figure S4. Key closed-shell–closed-shell overlaps between fragment molecular orbitals (FMOs, isosurface at 0.03 a.u.) in the *syn* and *anti*-conformers depicted as quantitative 3D plots for the chloroacetaldehyde analogue. Analysis in rigid rotation in *syn* geometry but with C–C bond distance set to 1.51 Å, computed at ZORA-BP86-D3(BJ)/QZ4P.

 $\cdots \langle 1\pi \mid 3\sigma \rangle \quad \cdots \langle 1\pi \mid 2\pi \rangle \quad - \langle 3\sigma \mid 1\pi \rangle \quad \cdots \langle 3\sigma \mid 2\pi \rangle \quad - - \langle 4\sigma \mid 2\pi \rangle \quad - \cdots - \langle 4\sigma \mid 3\sigma \rangle \quad \cdots \quad \langle 3\pi^* \mid 3\sigma \rangle \quad - \cdots \langle 3\pi^* \mid 2\pi \rangle$

Figure S5. a) Electrostatic interaction energy components, b) Pauli repulsion and key occupied–occupied orbital overlaps, and c) orbital interactions and key unoccupied–occupied orbital overlaps as a function of the $\varphi_{O=C-C-X}$ dihedral angle of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I). Analysis in rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å. Energy terms relative to the *syn* conformer, $\Delta\Delta E$, computed at ZORA-BP86-D3(BJ)/QZ4P.

	$\phi_{O=C-C-X} = 90^{\circ b}$			0	ρ _{O=C-C-X} = 100°	b
Χ	$\Delta \epsilon_{3\pi^*-3\sigma}$	$\langle 3\pi^* \mid 3\sigma \rangle^c$	$S^2/\Delta \epsilon \ge 10^3$	$\Delta \epsilon_{3\pi^*-2\pi}$	$\langle 3\pi^* \mid 2\pi \rangle^c$	$S^2/\Delta \varepsilon \ge 10^3$
F	9.9	0.12	1.5	8.2	0.05	0.3
Cl	8.0	0.15	2.8	6.1	0.06	0.6
Br	7.3	0.16	3.5	5.4	0.06	0.7
Ι	6.5	0.18	5.0	4.7	0.06	0.8

Table S3. Orbital energy gap (in eV) and overlap of key unoccupied–occupied orbital interactions of haloacetaldehydes OHC–CH₂X (X = F, Cl, Br, and I).^{*a*}

^{*a*} Computed at ZORA-BP86-D3(BJ)/QZ4P. ^{*b*} The orientation of the dihedral angle where each interaction is the most stabilizing (where X = F, Cl, Br, and I). ^{*c*} The $3\pi^*$ unoccupied orbital of the OHC[•] fragment and 3σ and 2π occupied orbitals of the CH₂X[•] fragment.

Figure S6. Electrostatic interaction between oxygen and halogen atoms for the C=O•••X–C colinear approach of the OHC• and CH₂X• fragments. a) ΔV_{elstat} as a function of the $r_{O•••X}$ distance (vertical lines indicate $r_{O•••X}$ separation in the corresponding haloacetaldehyde); b) density contours from -0.9 to 0.9 Bohr⁻³ for OHC• and CH₂X• fragments (X = F, I for upper and lower, resp.). Computed at ZORA-BP86-D3(BJ)/QZ4P.

Figure S7. Schematic diagram of the valence configuration of the O^{••} and X[•] (X = F and I) atoms used for the electrostatic interaction analysis shown in Figure 6c,d in the main text, in which the bare atoms approach each other along the z axis. Note that this reflects the situation for the interaction between the full OHC[•] and CH₂X[•] fragments, the parts of which that have been cut away, here, in the O^{••} and X[•] systems, are shown in faded grey.

Table S4. Syn relative to anti electrostatic interaction $\Delta\Delta V_{elstat}$ energy components (in kcal mol⁻¹) of haloacetaldehydes OHC-CH₂X (X = F, Cl, Br, and I).^{*a*}

X	$\Delta \Delta V_{\rm elstat}$	$\Delta\Delta V_{\rm elstat}(n_{\rm A}n_{\rm B})$	$\Delta\Delta V_{\rm elstat}(n_{\rm A}\rho_{\rm B})$	$\Delta\Delta V_{\rm elstat}(\rho_{\rm A}n_{\rm B})$	$\Delta\Delta V_{\rm elstat}(ho_{\rm A} ho_{\rm B})$	Δf^b
F	1.2	1,409.1	-1,430.2	-1,468.5	1,490.5	0.2
Cl	0.5	2,645.3	-2,667.2	-2,767.4	2,789.8	0.0
Br	0.1	5,484.4	-5,510.5	-5,743.0	5,768.9	0.3
Ι	-0.5	8,114.0	-8,135.8	-8,498.8	8,520.0	0.0

^{*a*} Data from the rigid rotation in *syn* geometry but with C–C distance set to 1.51 Å, computed at ZORA-BP86-D3(BJ)/QZ4P. ^{*b*} Fitting for incompleteness.

Table S5. Cartesian coordinates (Å), energies (kcal mol⁻¹), and the number of imaginary vibrational frequencies (N_{imag}) of the stationary points in the energy profiles for rotation around the C–C bond of haloacetaldehydes OHC–CH₂X and the open-shell HOC• and CH₂X• fragments (X = F, Cl, Br, and I), computed at ZORA-BP86-D3(BJ)/QZ4P.

Syn-fluoroacetaldehyde

•	·		
E = -896.	9		
$N_{imag} = 0$			
С	-0.87690441	-0.08771038	0.0000000
С	0.62587861	0.09020798	0.0000000
0	-1.45765841	-1.14626050	0.0000000
Н	-1.42382489	0.89240352	0.0000000
Н	0.91093353	0.67739427	0.89136772
Н	0.91093353	0.67739427	-0.89136772
F	1.31416093	-1.10645390	0.0000000

Gauche-fluoroacetaldehyde

E = -89	92.9		
N _{imag} =	= 1, $v = -167.31607i$ cm ⁻¹		
С	-0.83525652	-0.19523154	-0.27401587
С	0.59529088	0.04530442	0.22898136
0	-1.55036127	-1.04884085	0.19663180
Н	-1.18276050	0.45419916	-1.11445736
Н	0.59184615	0.12021427	1.32606517
Н	1.03702720	0.94626459	-0.21918065
F	1.38267224	-1.05365595	-0.13669899

Anti-fluoroacetaldehyde

<i>E</i> = -897.8	3		
$N_{imag} = 0$			
С	-4.94984467	-1.64098081	-0.10863772
С	-3.50288152	-1.33117841	0.23137926
0	-5.88093173	-1.15257689	0.49082334
Н	-5.08624182	-2.35646893	-0.95724304
Н	-3.29567990	-1.62067126	1.27283061
Н	-3.31762094	-0.25214257	0.11834504
F	-2.64062963	-2.03109418	-0.61484320

Syn-chloroacetaldehyde

-0.89048701	-0.08781307	0.0000000
0.61399877	0.08395543	0.0000000
-1.49392250	-1.13184604	0.0000000
-1.42190248	0.89958786	0.0000000
0.89847017	0.67147596	0.88511574
0.89847017	0.67147596	-0.88511574
1.53096109	-1.43954515	0.0000000
	-0.89048701 0.61399877 -1.49392250 -1.42190248 0.89847017 0.89847017 1.53096109	-0.89048701-0.087813070.613998770.08395543-1.49392250-1.13184604-1.421902480.899587860.898470170.671475960.898470170.671475961.53096109-1.43954515

Gauche-chloroacetaldehyde

E = -856.0

N _{imag} =	$= 1, v = -171.52758i \text{ cm}^{-1}$		
С	-0.85977660	-0.17562469	-0.26403032
С	0.57817177	0.04991713	0.19963510
0	-1.58184633	-1.03633646	0.17886982
Н	-1.21935743	0.53736243	-1.04635854
Н	0.58281757	0.26623417	1.27497852
Н	1.05070798	0.87011732	-0.34937489
Cl	1.57180592	-1.42502341	-0.05623762

Anticlinal-chloroacetaldehyde

E = -859.4 $N_{imag} = 0$

¹ imag = 0			
С	-4.97726201	-1.74866776	0.02288883
С	-3.52267187	-1.39527007	0.28218646
0	-5.88950114	-1.06496911	0.42686150
Н	-5.14357656	-2.68946686	-0.55427358
Н	-3.19689745	-1.87069238	1.21740838
Н	-3.40037454	-0.31141036	0.36473118
Cl	-2.46616463	-2.01151045	-1.03382574

Anti-chloroacetaldehyde

	•		
E = -85	59.3		
N _{imag} =	1, $v = -47.48150i$ cm ⁻¹		
С	-0.87006059	-0.67406376	0.0000000
С	0.47964884	0.03024507	0.0000000
0	-1.90679217	-0.05202500	0.0000000
Н	-0.83574239	-1.78980380	0.0000000
Н	0.56105037	0.66516679	0.89004073
Н	0.56105037	0.66516679	-0.89004073
Cl	1.84763232	-1.12985756	0.0000000

Syn-bromoacetaldehyde

E = -84	5.4		
N _{imag} =	0		
С	-0.89355984	-0.08655038	0.00000
С	0.60756859	0.08151005	0.00000
0	-1.50735768	-1.12477373	0.00000
Н	-1.42002774	0.90394928	0.00000
Н	0.90606516	0.65689473	0.886540
Н	0.90606516	0.65689473	-0.886540
Br	1.60717417	-1.58685813	0.00000

Gauche-bromoacetaldehyde

E = -843.6 $N_{imag} = 1, v = -164.67148 \text{i cm}^{-1}$ С -0.87406472 -0.15942520 -0.25271203 С 0.56684379 0.05362639 0.18322610 Ο -1.59594312 -1.03134481 0.16939660 Η -1.24607057 0.58912443 -0.99588259 0.30584339 Η 0.59856054 1.24940072 Η 1.06008752 0.83133735 -0.40539462 Br 1.62809501 -1.58419724 -0.02182747

Anticlinal-bromoacetaldehyde

E = -846.8

$N_{imag} = 0$			
С	-4.92579432	-1.82385935	0.15807148
С	-3.47990248	-1.46180002	0.40231809
0	-5.82950487	-1.02218082	0.24362879
Н	-5.10583387	-2.89097761	-0.11381579
Н	-3.05882524	-2.03205314	1.23807981
Н	-3.34990902	-0.38686018	0.54263845
Br	-2.45214514	-2.00321050	-1.18939026

Anti-bromoacetaldehyde

E = -846.1				
N _{imag} =	$= 1, \nu = -74.16080 \text{i cm}^{-1}$			
С	-0.97388205	-0.66362509	0.0000000	
С	0.40854757	-0.03197945	0.0000000	
0	-1.97117871	0.02061851	0.0000000	
Н	-1.00996083	-1.77872742	0.0000000	
Н	0.53703497	0.59054340	0.89171806	
Н	0.53703497	0.59054340	-0.89171806	
Br	1.83754363	-1.37357779	0.0000000	

Syn-iodoacetaldehyde

E = -83	4.3		
N _{imag} =	0		
С	-0.89843142	-0.08167042	0.0000000
С	0.60060356	0.08253120	0.0000000
0	-1.51782827	-1.11737900	0.0000000
Н	-1.42552666	0.90826164	0.0000000
Н	0.90487355	0.65606489	0.88531528
Н	0.90487355	0.65606489	-0.88531528
I	1.70406106	-1.76113128	0.0000000

Gauche-iodoacetaldehyde

E = -8	33.1		
N _{imag} =	= 1, $v = -150.57024i$ cm ⁻¹		
С	-0.88838105	-0.13840872	-0.23683699
С	0.55949314	0.05895731	0.16029294
0	-1.60495475	-1.02840720	0.15751175
Н	-1.28031275	0.65202063	-0.92524514
Н	0.61763507	0.33910380	1.21868848
Н	1.05415582	0.81513119	-0.45424644
I	1.71792178	-1.76146203	-0.01133764

Anticlinal-iodoacetaldehyde

E = -836.3

$N_{imag} = 0$			
С	-4.89438232	-1.84464147	0.20350702
С	-3.45373463	-1.48938404	0.45002462
0	-5.78258384	-1.02086707	0.15222154
Н	-5.09454063	-2.93366555	0.06148973
Н	-3.00589221	-2.09129461	1.24719671
Н	-3.31165081	-0.41853993	0.60680989
I	-2.36120792	-2.04613549	-1.34899724

Anti-iodoacetaldehyde

E = -83	34.5		
N _{imag} =	1, $v = -103.08701i \text{ cm}^{-1}$		
С	-1.09541926	-0.77428604	-0.13961112
С	0.23725323	-0.39169652	0.48268382
0	-2.08516465	-0.10888022	0.06203532
Н	-1.11069482	-1.68662291	-0.78163092
Н	0.15613277	-0.39286790	1.57457863
Н	0.53327413	0.60901005	0.15134527
I	1.83494980	-1.74859412	-0.04775879

Formy	l radical		
<i>E</i> = -39	3.8		
$N_{imag} =$	0		
С	0.14701429	-0.33290388	0.0000000
Н	0.88369536	0.52960719	0.0000000
0	-1.02716672	-0.20079752	0.0000000
Fluoro	methyl radical		
<i>E</i> = -42	1.4		
N _{imag} =	0		
H	0.07972884	0.56770797	0.96643106
С	-0.09663861	0.10262757	0.0000000
Н	0.07972884	0.56770797	-0.96643106
F	-0.05927603	-1.24536088	0.0000000
Chloro	methyl radical		
<i>E</i> = -38	5.1		
$N_{imag} =$	0		
Н	-0.06684151	0.56291984	0.95859566
С	-0.06321473	0.05778043	0.0000000
Н	-0.06684151	0.56291984	-0.95859566
Cl	-0.05100973	-1.64213383	0.0000000
Bromo	methyl radical		
<i>E</i> = -37	0.3		
$N_{imag} =$	0		
Н	-0.06707942	0.54053923	0.96024707
С	-0.06418621	0.03981111	0.0000000
Н	-0.06707942	0.54053923	-0.96024707
Br	-0.04461256	-1.81882173	0.0000000
Iodome	ethyl radical		
<i>E</i> = -35	8.7		
$N_{imag} =$	0		
Н	-0.07157004	0.53622196	0.95538321
С	-0.06340755	0.02512446	0.0000000
Н	-0.07157004	0.53622196	-0.95538321
I	-0.03871005	-2.02156433	0.0000000