
Supporting Information: Robustness and Accuracy 

Improvement of Data Processing with 2D Neural Network for 

Transient Absorption Dynamics

Ruixuan Zhaoa, ‡, Daxin Wua, ‡, Jiao Wenb, Qi Zhangc, Guanglei Zhanga, Jiebo Lia*

a Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, 

School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. 

China

b School of Materials Science and Engineering Beihang University Beijing 100191, China

c State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of the Chemical Physics 

Chinese Academy of Sciences Dalian, Liaoning 116023, China

* jiebo39@buaa.edu.cn;

‡ These authors contribute equally to this work.

Including Fig. S1-3.

S1 Training set generation for 1DCNN

Fig. S1 (a)Generated single exponential training sample for 1DCNN. (b)Generated bi-

exponential training sample for 1DCNN.

To obtain well trained model and achieve effective classification of exponential form for decay 

process, both single exponential decay and bi-exponential decay (Fig. S1(b)) were simulated in the 

form of Eq. 8 with addition of Poisson noise. Overall, 150 sets of spectrum were simulated in which 
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each spectrum had 100 wavelength units. Furthermore, to promise the balance of different 

exponential forms in a training sample, different exponential decay was generated randomly (50% 

bi-exponential decay, 50% single-exponential decay) in a spectrum and the lifetime distribution was 

also determined randomly (μ = 10 ps or μ = 100 ps) in a single exponential decay (Fig. S1(a)). 

Specifically, in a bi-exponential decay, the amplitude fraction in Eq. 8 was set as a random number 

ranging from 0 to 1 so that effective sampling between two lifetime distribution could be achieved 

and the training effectiveness could be promised. 

S2 Training set generation for highly noised data





Fig. S2 Generated highly noised data sample with (a) SNR = 10, (b) SNR = 2, (c) SNR = 1, (d) 

SNR = 0.

First, to characterize the noise background, signal to noise ratio (SNR) was defined as 

(dB), and Psignal was calculated from , where x[n] stands for sampling points 
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in exponential decay without noised background, so as the calculation process of Pnoise. As shown in 

Fig. S2, to test the robustness of our algorithm under highly noised data, 150 sets of spectrum were 

simulated respectively with different SNR (SNR = 0, SNR = 1, SNR = 2, SNR = 10). Furthermore, 

all the decay curves were simulated using Eq. 8 in biexponential form with life time in different 

distributions(t1: μ = 10 ps σ = 0.5, t2:μ = 100 ps, σ = 5, A1: μ= 0.2, σ = 0.1), and the amplitude 

fraction A1 was set as a random number ranging from 0 to 1 to promise impartial sampling. 

Fig. S3 Generated exponential decay and the prediction of lasso with different resolution ω 

(a) 3.5, (b) 3.6.

During exponential sampling process characterized by Γk = Γ0 exp(kπ/ω), even Γ0 could be fixed 

according to the limitation of detecting range of experimental instrument for specific task, the 

determination of resolution omega could still be an onerous task. As shown in Fig. S3(a), Γ0 was set 

to 0.001 and omega was set to 3.5, as comparison, Γ0, omega was set to 0.001 and 3.6 in Fig. S3(b). 

We could obviously differentiate that omega = 3.5 enables better fitting to the simulated decay 

curve. However, there only exists 1% discrepancy in ω1 and ω2, which indicates that omega 

possesses a relatively rugged solution space and it is arduous to search the reasonable resolution 



artificially. 


