Supplementary Information

for

Deciphering capacitance frequency technique for performance limiting defect state parameters in energy harvesting perovskites

Vikas Nandal,*a,b Sumanshu Agarwal,*c and Pradeep R. Nair*b

^aGlobal Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.

^b Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai-400076, Maharashtra, India.

^c Department of Electronics and Communication Engineering, Institute of Technical Education and Research, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar, Odisha— 751030, India.

*Email: <u>nk.nandal@aist.go.jp</u>, <u>sumanshuagarwal@soa.ac.in</u>, <u>prnair@ee.iitb.ac.in</u>

Table S1. Material parameters employed to study capacitance frequency technique in perovskitebased PIN device.

Parameters	Numerical values
Effective density of states for	$10^{20} cm^{-3}$
conduction/valence band, $N_{c,v}$	
Charge carrier mobility, μ	$0.2 \ cm^2 V^{-1} s^{-1}$
Charge carrier life time, $ au$	3 µs
Band gap, E_g	1.55 <i>eV</i>
Dielectric constant	4
Conduction (or valence) band offset at HTL(1 eV
or ETL)/perovskite interface	
Valence (or conduction) band offset at HTL(0 eV
or ETL)/perovskite interface	
Doping density	10^{18} cm ⁻³ p-type in HTL, n-type in ETL
Trap energy, E_t	0.3-0.7 eV
Trap density, N_t	$(3 \text{ to } 10) \times 10^{16} \text{ cm}^{-3} \text{eV}^{-1}$
Gaussian dispersion factor, σ	0.11 <i>eV</i>
Attempt to escape frequency, f_{AEF}	$3 \times 10^{11} Hz$

Figure S1. Influence of (a, b) temperature T and (c, d) trap energy E_t on the capacitance C frequency f and -fdC/df frequency characteristics of perovskite-based PIN devices with trap density $N_t = 5 \times 10^{16} \text{ cm}^{-3} eV^{-1}$. In panel (a), for deep trap states $E_t = 0.65 eV$, the increase in capacitance with the temperature is originated from the thermal energy induced increased detrapping response of the trapped charges with the modulating signal frequency f. As a result, in panel (b), the characteristic frequency f_0 (at maximum -fdC/df) increases with the increase of temperature. Besides temperature, in panels (c, d), such enhancement effects are obtained for shallow trap states ($E_t = 0.4 eV$) located close to the valence energy band in comparison to deep trap states ($E_t = 0.65 eV$).

Figure S2. Energy band diagram of perovskite-based PIN device. The trap density $N_t = 5 \times 10^{16} cm^3 eV^{-1}$ with gaussian distribution is located at an energy $E_t = 0.65$ eV above valence energy band E_v . The trapped negative charges close to and below Fermi-energy level create parabolic energy bands in space charge region (SCR). The effective length L_{eff} and built-in voltage V_{bi}^{eff} of SCR are less than the values $(L; V_{bi})$ across physical thickness of perovskite layer.

Figure S3. (a) Effect of trap density N_t (present at trap energy E_t) on capacitance-voltage (CV) characteristics (on the left axis) and variation of extracted effective length or space charge width $L_{eff} = \epsilon/C$ with voltage at trap energy $E_t = 0.65 \ eV$. (b) Energy band diagram in the perovskite layer at voltage V = -2, 0 V. CV characteristics follows Mott-Schottky behavior, whereas the effective length having parabolic energy bands increases with the decrease of voltage.

Figure S4. Capacitance frequency technique (CFT) analysis of perovskite-based PIN devices. (ad) Computed capacitance frequency CF cures, and (e-h) -fdC/df vs. frequency f characteristics at temperature T (= 240 to 350 K in steps of 10 K) for various input trap density N_t located at deep trap energy $E_t = 0.65 \ eV$ from valence energy band. Increase in N_t primarily leads to the increase in the magnitude of the capacitance C and -fdC/df, however, does not exhibit a change in frequency f_0 (corresponding to maximum -fdC/df) at a fixed T.

Figure S5. Predicted trap states distribution from capacitance frequency technique of perovskitebased PIN devices. Extracted trap states distribution using different models (*i.e.*, developed PBAEL, previous PBA, and LBA models). The black lines represent the actual input of gaussian trap state distribution in the perovskite layer at trap energy $E_t = 0.65 \ eV$. PBAEL model accurately estimates the trap state distribution, whereas the exiting models of PBA and LBA provide the underestimated values.