Supplementary Materials for

3 Adsorption and Reaction Mechanism of Single and Double H₂O

4 Molecules on Graphene Surface with Defects: A Density Functional

5 Theory Study

6 Zeng Liang¹, Kejiang Li^{1*}, Ziming Wang¹, Yushan Bu¹, Jianliang Zhang¹,

7

1 2

- 8 ¹ School of Metallurgical and Ecological Engineering, University of Science and Technology
- 9 Beijing, Beijing 100083, P.R. China.

10

- 11 *Corresponding author: Kejiang Li
- 12 Address: 30 Xueyuan Rd., Haidian District, Beijing 100083, PR China.

13 E-mail: likejiang@ustb.edu.cn (Kejiang Li) 14 15 16 17 This PDF file includes: 18 19 20 Figs. S1 to S4 21 22 Table S1 to S3 23 24

Fig. S1. The charge density of the optimal physical adsorption configuration (Fig.1. in the paper) on the four surfaces: (a) pristine graphene surface; (b) SW defect surface; (c) single vacancy defect surface; (d) double vacancy defect surface; (take the three atoms of the water molecule as a plane to cut the plane)

32 Fig. S2. The charge density distribution of 1C configuration (fig.6. in the paper) (a) in 3D; (b) on the plane of

34

35 Fig. S3. The charge density distribution of 2C configuration (fig.7. in the paper) (a) in 3D; (b) on the plane of

36 the hydroxyl group; (c) on the plane of the C-H bond

37

- 39 Fig. S4. The charge density distribution of 2E configuration (fig.7. in the paper) (a) in 3D; (b) on the plane of
- 40 the hydroxyl group; (c) on the plane of the C-H bond
- 41
- 42 Table S1. Comparison of the calculation results of different vdw corrections. (For the top site of the PG surface)

PG top	u	d	р	vd	vu
vdW-DF2	-0.11191	-0.11506	-0.11479	-0.12288	-0.12915
vdW-DF	-0.13418	-0.13372	-0.13115	-0.13444	-0.14748
DFT-D2	-0.08034	-0.12442	-0.12464	-0.13268	-0.13037
DFT-D3	-0.08797	-0.12361	-0.12328	-0.12832	-0.12918

43

44 Table S2. Charge transfer of the four optimal physical adsorption configurations (C1 represents the carbon

- 45 atom that interacts with the OH bond of H₂O molecule, C2, C3, and C4 are the three carbon atoms closest to
- 46 C1 respectively)

	PG	SW	SV	DV
C1	0.014	0.0097	0.0421	0.0203
C2	0.0067	0.0092	-0.0013	0.0071
C3	0.0068	-0.0061	-0.0021	0.0044
C4	-0.0029	-0.0003	-0.0019	-0.0023

⁴⁷

48 Table S3. The maximum energy span of the possible paths for the formation of single water molecule adsorption

49 configuration (corresponding to Fig.6 in paper).

Configuration	РАТН	Energy barrier
1C	SV-1C	0.55 eV
1A	SV-1C-1A	1.47 eV
1D	1) SV-1C-1A-1D	1.47 eV
	2) SV-1C-1E-1D	1.49 eV
1E	SV-1C-1E	0.55 eV
1F	SV-1C-1A-1F	1.47 eV

50