Supporting Information

Dithienocoronenediimide (DTCDI)-Derived Triads for High-Performance Air-Stable, Solution-Processed Balanced Ambipolar Organic Field-Effect Transistors

Huijuan Ran,^{†,‡} Fei Li,^{§,‡} Rong Zheng,[†] Wenjing Ni,[†] Zheng Lei,[†] Fuli Xie,[†] Xuewei Duan,[†] Ruijun Han,[†] Na Pan,[†] and Jian-Yong Hu*[†]

[†]Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xian 710119, China

[§]Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China

E-mail: hujianyong@snnu.edu.cn

Content

- 1. Synthesis of dithienocoronenediimide (DTCDI)-derived triads
- 2. Thermal gravimetric analysis (TGA)
- 3. Differential scanning calorimetry (DSC) Measurements
- 4. Photoelectron yield spectroscopy (PESA) mesurement
- **5. OFET device performances**
- 6. NMR spectra
- 7. FT-TR spectrum
- 8. Mass spectra

1. Synthesis of dithienocoronenediimide (DTCDI)-derived triads Synthesis of parent DTCDI

PDI-BT ^[1] (220 mg, 0.175 mmol), I₂ (91.7 mg, 0.361 mmol) was dissolved in benzene (125 mL), and stirred for 18h with exposure in UV-light (302 nm). After the reaction was done, the solvent was evaporated in vacuum. The crude was washed with acetone and methanol, purified by column chromatography (Silica gel, hexane:dichloroform (2:1), v/v)) to afford the pure product (66 mg, 30%). ¹H NMR (300 MHz, CDCl₃, δ): 8.42 (s, 2H), 8.24 (s, 2H), 8.86-8.77 (m, 4H), 4.16 (m, 4H), 2.02 (m, 4H), 1.50-1.19 (m, 82H), 0.83 (m, 12H).

Synthesis of DTCDI-BT

The dibromo intermediate DTCDI-2Br (200 mg, 0.14 mmol), 2-(tributyl)stannylthiophene (211 mg, 0.57 mmol), Pd₂(dba)₃ (4.67 mg, 0.005 mmol), P(*o*-Tolyl)₃ (6.93 mg, 0.0228 mmol) were dissolved in dry chlorobenzene (27 mL) under nitrogen, and the reaction mixture was heated at 135 °C for 20 h. After cooling to room temperature, the reaction mixture was quenched with water, and extracted with toluene. The solvent was evaporated to dryness to give a solid crude product. The crude was purified by recrystallized from a large amount of chloroform to give the desired compound as a red-purple solid (0.160 g, 80% yield). IR: v = 1700 (C=O), 1658 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, δ): 9.16 (s, 2H), 8.95 (s, 2H), 8.80 (s, 2H), 7.56-7.54 (m, 6H), 4.17 (m, 4H), 2.01

S-3

(m, 4H), 1.50-1.12 (m, 82H), 0.80 (m, 12H). ¹³C NMR spectra was not obtained due to its limited solubility. MALDI-TOF m/z: 1416.4610, calcd 1416.1392. Anal. Calcd for $C_{90}H_{114}N_2O_4S_4$: C, 76.33; H, 8.11; N, 1.98; S, 9.06. Found: C, 76.32; H, 8.12; N, 1.98; S, 9.05.

Synthesis of DTCDI-BBT

The synthetic procedure is similar as described for **DTCDI-BT.** Reagent used were 2-(tributyl)stannylbenzo[*b*]thiophene (168.58 mg, 0.57 mmol), Pd₂(dba)₃ (4.67 mg, 0.005 mmol), P(*o*-Tolyl)₃ (6.93 mg, 0.0228 mmol) and chlorobenzene (27 mL). After workup, the product was red-purple solid (161 mg, 75% yield). IR: v = 1700 (C=O), 1658 (C=O) cm⁻¹. ¹H NMR and ¹³C NMR spectra were not obtained due to its limited solubility. MALDI-TOF m/z: 1516.5774, calcd 1516.2565. Anal. Calcd for C₉₈H₁₁₈N₂O₄S₄: C, 77.63; H, 7.84; N, 1.85; S, 8.46 Found: C, 77.64; H, 7.83; N, 1.85; S, 8.43.

Synthesis of DTCDI-BNT

The synthetic procedure is similar as described for **DTCDI-BT**. Reagent used were 2-(tributyl)stannylnaphtho[2,3-b]thiophen (196.96 mg, 0.57 mmol), Pd₂(dba)₃ (4.67 mg, 0.005 mmol), P(*o*-Tolyl)₃ (6.93 mg, 0.0228 mmol) and chlorobenzene (27 mL). After workup, the product was red-purple solid (167 mg, 73% yield). IR: v = 1700 (C=O), 1658 (C=O) cm⁻¹. ¹H NMR and ¹³C NMR spectra were not obtained due to its limited solubility. MALDI-TOF m/z: 1616.5951, calcd 1616.3739. Anal. Calcd

for C₁₀₆H₁₂₂N₂O₄S₄: C, 78.76; H, 7.61; N, 1.73; S, 7.94 Found: C, 78.77; H, 7.63; N, 1.72; S, 7.92.

2. Thermal gravimetric analysis (TGA)

Fig. S1 TGA plots of compounds **DTCDI-BT**, **DTCDI-BBT** and **DTCDI-BNT** under a nitrogen flow with a heating rate of 20 °C/min.

(a) ³ DTCDI-BT $T_{\rm c} = 204^{\rm o}{\rm C}$ Heat Flow (mW) 2 1 0 *T*_m = 225°C _1 -2 200 100 Ò 300 400 Temperature / °C (b) ⁸ DTCDI-BBT Heat Flow (mW) T_c = 365°C *T*_m = 366°C -2

100

Ó

200

Temperature / °C

300

400

500

Fig. S2 DSC curves of **DTCDI-BT** (a), **DTCDI-BBT** (b) and **DTCDI-BNT** (c) in the second heating-cooling cycle under a nitrogen flow with a heating rate of 10 °C/min.

4. Photoelectron yield spectroscopy (PESA) mesurement

Fig. S3 Photoelectron yield spectroscopy in air (PESA) spectra of **DTCDI-BT** (a), **DTCDI-BBT** (b) and **DTCDI-BNT** (c) in a spin-coated film on a precleaned ITO substrate annealed along with that of as-spun film.

5. OFET Fabrication and Measurement

Fig. S4 (a) Chemical structures of **DTCDI**; (b) Schematic representation of bottom-gate top-contact device architecture used in this work; Transfer and output characteristics for EFTs with **DTCDI**-based as-spun thin film (c, d) evaluated under ambient conditions.

Fig. S5 Transfer (left) and output (right) characteristic curves of BGTC transistors based on **DTCDI-BT** evaluated under ambient conditions at different thermal annealing temperatures together: (a) 100°C; (b) 150°C; (c) 200°C.

Fig. S6 Transfer (left) and output (right) characteristic curves of BGTC transistors based on **DTCDI-BBT** evaluated under ambient conditions at different thermal annealing temperatures together: (a) 100°C; (b) 150°C; (c) 200°C; (d) 250°C.

Fig. S7 Transfer (left) and output (right) characteristic curves of BGTC transistors based on **DTCDI-BNT** evaluated under ambient conditions at different thermal annealing temperatures together: (a) 100°C; (b) 150°C; (c) 200°C; (d) 250°C.

6. NMR spectra

Fig. S8 ¹H NMR spectrum of DTCDI (400 MHz, CDCl₃, r.t.)

Fig. S9 ¹H NMR spectrum of DTCDI-BT (400 MHz, CDCl₃, r.t.)

7. Mass spectra

Fig. S10 Mass spectra of DTCDI.

Fig. S11 Mass spectra of DTCDI-BT.

Fig. S12 Mass spectra of DTCDI-BBT.

Fig. S13 Mass spectra of DTCDI-BNT.

8. FT-TR spectrum

Fig. S14 FT-IR spectra of DTCDI-BT.

Fig. S15 FT-IR spectra of DTCDI-BBT.

Fig. S16 FT-IR spectra of DTCDI-BNT.