Supplementary Information for:

A flat-lying dimer as a key intermediate in NO reduction on Cu(100)

Kenta Kuroishi,¹ Muhammad Rifqi Al Fauzan,^{2,3} Thanh Ngoc Pham,² Yuelin

Wang,² Yuji Hamamoto,^{2,4} Kouji Inagaki,^{2,4} Akitoshi Shiotari,¹ Hiroshi Okuyama,¹

Shin-ichiro Hatta,¹ Tetsuya Aruga,¹ Ikutaro Hamada,^{2,4} and Yoshitada Morikawa^{2,4,5}

¹Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
²Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
³Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
⁴Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyou-ku, Katsura, Kyoto 615-8245, Japan
⁵Research Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

(Dated: June 14, 2021)

I. SUPPLEMENTARY TEXT

A. Decomposition of adsorption energy

The adsorption energy of the $(NO)_2$ per NO molecule is defined by

$$E_{\rm ads} = \frac{1}{2} \left(E_{\rm tot}^{(\rm NO)_2/\rm Cu(100)} - E_{\rm tot}^{\rm Cu(100)} - 2E_{\rm tot}^{\rm NO} \right), \tag{1}$$

where $E_{\text{tot}}^{(\text{NO})_2/\text{Cu}(100)}$, $E_{\text{tot}}^{\text{Cu}(100)}$, and $E_{\text{tot}}^{\text{NO}}$ are the total energies of $(\text{NO})_2/\text{Cu}(100)$, clean Cu(100), and gas-phase NO, respectively. The adsorption energy can be decomposed into the contribution from the interaction between $(\text{NO})_2$ and surface and that from the interaction between NO molecules in $(\text{NO})_2$ in the adsorbed geometry as follows: The interaction energy between $(\text{NO})_2$ and Cu(100) is defined by

$$E_{\rm int}^{\rm (NO)_2-Cu(100)} = \frac{1}{2} \left(E_{\rm tot}^{\rm (NO)_2/Cu(100)} - E_{\rm tot}^{\rm Cu(100)} - E_{\rm tot}^{\rm (NO)_2^*} \right)$$
(2)

where $E_{tot}^{(NO)_2^*}$ is the total energy of (NO)₂ in the adsorbed geometry. The positive (negative) value means that the interaction of the NO *dimer* with the surface is attractive (repulsive). The interaction energy between NO molecules in (NO)₂ in the adsorbed geometry is defined by

$$E_{\rm int}^{\rm NO-NO} = \frac{1}{2} \left(E_{\rm tot}^{\rm (NO)_2^*} - 2E_{\rm tot}^{\rm NO} \right) \tag{3}$$

The negative (positive) value indicates the attractive (repulsive) interactions between NO molecules.

TABLE S1. Adsorption energy (E_{ads}) , interaction energies $(E_{int}$'s), N–O bond length (d_{N-O}) , N–N bond length (d_{N-N}) , O–O bond length (d_{O-O}) and tilting angles of NO from the surface normal $(\angle_{NO}/^{\circ})$ of a_0 -(NO)₂, upright ONNO, and flat-lying ONNO.

Dimer species	$E_{\rm ads}/{\rm eV}$	$E_{\rm int}^{\rm (NO)_2-Cu(100)}/{\rm eV}$	$E_{\rm int}^{\rm NO-NO}/{\rm eV}$	$d_{\rm N-O}/{\rm \AA}$	$d_{\rm N-N}/{\rm \AA}$	$d_{\rm O-O}/{\rm \AA}$	$\angle_{\rm NO}/^{\circ}$
a_0 -(NO) ₂	-1.54	-1.75	0.21	1.24	2.83	2.61	5
Upright ONNO	-1.52	-1.62	0.10	1.24	1.56	2.67	27
Flat-lying ONNO	-1.70	-2.41	0.71	1.33	1.33	2.55	27

FIG. S1. Typical STM image of Cu(100) after exposed to NO at 64 K (molecular adsorption) and then heated to 85 K (for the reaction). The image was obtained at 64 K. The unreacted NO molecules (bright rings) are indicated by the arrows. The image size is 150×140 Å. $V_s=0.1$ V and I=2 nA.

FIG. S2. Energy diagram of NO direct dissociation on Cu(100). The energy is referenced to the sum of the total energies of the clean surface and gas-phase NO.

FIG. S3. (a)-(c) Sequential STM images of NO molecules induced to react by voltage pulses at 6 K. A a_0 -dimer in (a) imaged as twin elongated protrusions was first converted to a flat-lying ONNO (semicircle depression) and then to an oxygen atom (round depression). (d)-(f) The same images as (a)-(c) with the lattice of Cu(100) superimposed, clearly showing the registries of the molecules with the surface.

FIG. S4. Projected densities of states (PDOS) onto (a) the $2\pi^*$ orbital of NO monomer on Cu(100), PDOSs onto the molecular orbitals consisting of $2\pi^*$ orbitals (7 a_1 , 2 b_1 , 2 a_2 , and 7 b_2) for dimer at the distance of (b) $2\sqrt{2}a_0$, (c) $2a_0$, (d) $\sqrt{2}a_0$, and (e) a_0 .

FIG. S5. Projected densities of states (PDOS) and crystal orbital overlap population (COOP) between the $2\pi^*$ orbitals of NO monomers in (a) a_0 -(NO)₂, (b) upright ONNO, and (c) flat-lying ONNO.