Supplementary Information for

Probing reaction processes and reversibility in Earth-abundant Na₃FeF₆ for Na-ion batteries

Emily E. Foley,^{a,c} Anthony Wong,^b Rebecca C. Vincent,^{a,c} Alexis Manche,^{a,c,d} Aryan Zaveri,^{c,e} Eliovardo Gonzalez-Correa,^{a,c} Gabriel Ménard,^b Raphaële J. Clément*^{a,c}

- ^{a.} Materials Department, University of California Santa Barbara, California 93106, United States
- ^{b.} Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106, United States
- ^{c.} Materials Research Laboratory, University of California Santa Barbara, California 93106, United States
- ^{d.} Present address: School of Chemistry, University of St-Andrews, North Haugh, St-Andrews, KY16 9ST, United Kingdom
- ^{e.} Physics Department, University of California Santa Barbara, California 93106, United States

*email: <u>rclement@ucsb.edu</u>

Figure S1, Structure of $Na_3FeF_6 = (Na2)_2(Na1)FeF_6$. The two distinct Na sites, Na1 and Na2, are labeled in yellow and orange, respectively. Fluorine is shown in grey and iron in burgundy.

	Na_3FeF_6					NaF	
	a (Å)	b (Å)	c (Å)	beta	Volume (Å ³)	a (Å)	Volume (Å ³)
Literature ^{1,2}	5.514	5.734	7.973	90.420	252.078	4.635	99.601
MW Pristine	5.512	5.727	7.962	90.396	251.334	4.633	99.460
MW C-Coated	5.514	5.728	7.964	90.420	251.542	4.632	99.389
BM Pristine	5.514	5.733	7.973	90.414	252.052	4.635	99.595
BM C-Coated	5.514	5.734	7.973	90.420	252.078	4.635	99.601
MW DC 0.65 V	5.514	5.734	7.973	90.420	252.078	4.635	99.601
MWC4V	5.513	5.726	7.969	90.430	251.557	4.632	99.390

Table S1, Refined lattice parameters for Na_3FeF_6 and NaF phases in the pristine and ex situ cycled electrode samples.

Supplemental Note 1, Comparing first principles (CRYSTAL17) and experimental NMR parameters

The computed hyperfine (paramagnetic) NMR properties are obtained at 0 K for Na₃FeF₆ supercells containing ferromagnetically-aligned open-shell Fe³⁺ ions. To compare CRYSTAL17 calculation results with experimental data acquired at room temperature, the computed shifts must be subsequently scaled to a value consistent with the paramagnetic state of the system at the temperature of the NMR experiments, using a magnetic scaling factor Φ of the form:

$$\Phi(T_{exp}) = \frac{\langle M(T_{exp}) \rangle}{M_{sat}}, \qquad (1)$$

where M_{sat} is the saturated (ferromagnetic) Fe³⁺ magnetic moment at 0 K, and $\langle M(T_{exp}) \rangle$ the bulk average magnetic moment measured at the sample experimental temperature, T_{exp} . Here, T_{exp} is set to 320 K to account for frictional heating caused by fast (60 kHz) sample rotation during NMR data acquisition.

The magnetic scaling factor in eq. (1) can be evaluated from the experimental magnetic properties of the material:

$$\Phi(T) = \frac{B_0 \mu_{eff}^2}{3k_B g_e \mu_B S(T - \Theta)},$$
(2)

where B_0 is the external magnetic field, μ_{eff} is the effective magnetic moment per Fe site, k_B is Boltzman's constant, g_e is the free electron g-value, μ_B is the Bohr magneton, *S* is the formal spin of Fe³⁺ (3*d*⁵, *S* = 5/2), and Θ is the Weiss constant. A derivation of eq. (2), starting from the Brillouin function in the low field, high temperature limit, can be found in a previous study by Kim et al.³ Eq. (2) uses the "spin-only" expression for the magnetic moment and is only strictly valid when the orbital angular momentum is quenched.⁴ Yet, for systems where spin-orbit coupling effects are negligible, such as Na₃FeF₆, the spin-only expression is a good approximation to the true magnetic behavior of the system. The experimental inverse magnetic susceptibility vs. temperature curve obtained for Na₃FeF₆ is shown in Figure S2b. From the BM-Na₃FeF₆ data, an effective magnetic scaling factor, Φ , of 0.0328 is obtained for T = 320 K and B_0 = 7.05 T. This value was used to scale the computed ²³Na and parameters listed in Tables 1 and S2. The ¹⁹F NMR observed chemical shifts were computed to be between 19488 ppm (H20) and 20476 ppm (H35). However, we have previously shown that ¹⁹F nuclei directly bonded to paramagnetic centers are too broad and too short lived to be observed⁵ and so these signals were not observed. Table S2: First principles ²³Na NMR parameters computed on Na₃FeF₆ H20 and H35 optimized (OPT) structures using the CRYSTAL17 code. The predicted NMR properties have been scaled using a magnetic scaling factor $\Phi = 0.0328$, and are comparable to the room temperature ²³Na solid-state NMR data obtained at an external magnetic field of $B_0 = 7.05$ T. There are two Na local environments in Na₃FeF₆, denoted Na1 and Na2, with multiplicities specified in parentheses in the table below. δ_{iso} is the isotropic Fermi contact shift, $\Delta\delta$ and η are the electron-nuclear dipolar anisotropy and asymmetry parameters, respectively, C_Q is the quadrupolar coupling constant, η_Q is the quadrupolar asymmetry, δ_Q is the second-order quadrupolar shift, and $\delta_{obs} = \delta_{iso} + \delta_Q$ is the observed chemical shift.

Environment	Parameter	OPT H20	OPT H35	
	δ _{iso} /ppm	2564	1923	
	$\Delta\delta_{ m /ppm}$	369	343	
	η	0.5	0.4	
Nal	C _{Q/MHz}	-2.08	-2.13	
(XI)	η_Q	0.7	0.6	
	δ _Q /ppm	-20	-20	
	$\delta_{iso} + \delta_{Q/\mathbf{ppm}}$	2544	1903	
	δ _{iso} /ppm	484	148	
	$\Delta\delta_{ m /ppm}$	-1048	-1106	
	η	0.6	0.6	
Na2	C _{Q/MHz}	-2.33	-2.38	
(X2)	η_Q	0.8	0.8	
	δ _Q /ppm	-27	-28	
	$\delta_{iso} + \delta_{Q/ppm}$	457	120	

Table S3. Unit cell parameters for the experimental Na_3FeF_6 (P2₁) structure,¹ and for the structures optimized using the H20 and H35 functionals in this work.

Structur e	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	α/°	β / °	γ / °
EXP	11.028	11.468	15.946	90.0	90.42	90.0
ОРТ H20	10.972	11.452	15.875	90.0	90.9	90.0
ОРТ H35	10.905	11.381	15.777	90.0	90.9	90.0

Figure S2, ¹⁹*F ssNMR and Magnetic Data collected on the As-Prepared* Na_3FeF_6 *Samples.* a) ¹⁹*F* spin echo NMR spectra obtained on the as-prepared materials. Each spectrum is scaled according to the number of moles of material in the rotor and the number of scans collected during the NMR experiment. Spinning sidebands are indicated by an asterisk (*). b) Inverse magnetic susceptibility curves obtained at 2000 Oe on the pure pristine Na₃FeF₆ samples (solid lines), and associated Curie-Weiss fits (dashed lines).

Table S4, Summary of ⁵⁷Fe Mössbauer parameters for this study and relevant reference materials. All values reported here are referenced to α -Fe at 290 K.

As-Synthesized						
$\delta \text{ (mm/s)} \Delta E_Q \text{ (mm/s)}$						
MW Pristine	0.27	0.09				
MW C-coated	0.27	0.11				
BM Pristine	0.27	0.15				
BM C-coated	0.27	0.15				

Ex Situ		Fe ³⁺			Reduced-Fe			
		δ (mm/s)	ΔE _Q (mm/s)	Signal %	δ (mm/s)	$\Delta E_Q (mm/s)$	Signal %	
	DC 1.3 V	0.27	0.14	91%	1.16	0.19	9%	
MW	DC 0.65 V	0.27	0.14	90%	1.16	0.2	10%	
thick	C 4.0 V	0.28	0.14	95%	1.14	0.28	5%	
	2 nd DC 0.65 V	0.27	0.14	88%	1.15	0.20	12%	
BM	DC 0.65 V	0.27	0.15	89%	1.17	0.19	11%	
thick	C 4.0 V	0.26	0.14	96%	1.19	0.20	4%	
BM	DC 0.65 V	0.26	0.15	90%	1.14	0.28	10%	
thin	C 4.0 V	0.26	0.14	95%	1.17	0.25	5%	

	δ (mm/s)	$\Delta E_Q (mm/s)$	Reference
Fe(II)F ₂	1.361	2.791	6
Fe(III)F ₃	0.481	0.05	7
NaFe(II)F ₃	1.25	1.25	8
NaFe(III)F ₄	0.414	0.632	9
	1.17	1.49	9
	0.402	0.566	-
Na ₃ Fe(III)F ₆	0.27	0.15	This work

Figure S3, Additional Electrochemical Characterization of Na_3FeF_6 . a) Electrochemical profile obtained on BM thin cells when charged first and at various cycling rates. b) 1st discharge-charge electrochemical profiles obtained on BM thick cells hand ground with C for 15 min and C-coated for 1 hr, 12 hr, and 24 hr. c) Electrochemical profiles corresponding to the 1st two discharge-charge cycles and obtained on MW thick and thin cells. d) Electrochemical profiles corresponding to the 1st discharge-charge cycle obtained on the thick and thin blank (NaF) cells. e) Overpotential measured by GITT at various points during the first discharge process. f) dQ/dV comparison for the 1st discharge-charge cycle for BM thin and thick cells.

Figure S4, Synchrotron XRD ex situ Characterization. Synchrotron XRD pattern (colored line) and the total Rietveld refinement (black) for MW pristine (a), MW C-coated (b), and MW thick discharge (c) and charge (d). The grey line corresponds to the background used for each diffraction pattern which is predominantly attributed to the Kapton capillary used to hold each sample.

<i>Table S5</i> , Summary of attempted phases used to fit the unidentified reflections at $Q \approx 1.3, 1.9, 2.1,$
2.4, 3.1, and 3.8 Å ⁻¹ in the ex situ SXRD patterns. All of the phases containing H ₂ O were also
attempted dehydrated.

Formula	Space Group
Fe	<i>Fm</i> -3 <i>m</i> , <i>Im</i> -3 <i>m</i>
FeF ₂	P4 ₂ /mnm
Fe ₂ F ₅ (OH)(H ₂ O)	Fd-2mZ
FeF ₂ (H ₂ O) ₄	R-3mH
FeF ₃	<i>R</i> -3 <i>c</i> , <i>Fd</i> -3 <i>m</i> , <i>R</i> -3 <i>c</i> , <i>P</i> 321, <i>Cmcm</i> , <i>Pm</i> -3 <i>m</i>
FeOF	P4 ₂ /mnm
FeO	<i>Fm</i> -3 <i>m</i> , <i>R</i> -3 <i>m</i>
Fe ₃ O ₄	Cmcm, Cc, F–43m, Fd–3m
Fe ₂ O ₃	Aea2, Cmcm
Fe(OH)F	Pnma
FeF ₂ (H ₂ O) ₄	<i>R</i> -3 <i>m</i>
Fe ₃ F ₈ (H ₂ 0) ₂	C2/m
FeF _{2.5} (H ₂ O) _{0.5}	Fd-3m
Fe ₂ F ₅ (H ₂ O) ₂	Imma
FeF ₃ (H ₂ O) _{0.33}	Стст
FeF ₃ (H ₂ O)3	P4/n
NaFeF ₃	Cmcm, Pnma
Na ₂ Fe ₂ F ₇	<i>C</i> 2/ <i>c</i>
Na ₃ FeF ₆	<i>P</i> 2 ₁
NaFeF ₄	$P2_1/c$
Na ₅ Fe ₃ F ₁₄	$P2_1/c, P4_22_12$

Figure S5, Expanded ²³*Na NMR ex situ Characterization.* ²³Na spin echo NMR spectra obtained on MW thick Na₃FeF₆ at various stages of charge. Each spectrum has been scaled according to the number of moles of material in the rotor and the number of scans collected during the NMR experiment. Spinning sidebands are indicated by an asterisk (*).

Figure S6, ¹⁹*F NMR ex situ Characterization.* ¹⁹F spin echo NMR spectra collected on *ex situ* MW thick (a), BM thick (b), and BM thin (c) Na₃FeF₆. Each spectrum has been scaled according to the number of moles of material in the rotor and the number of scans collected during the NMR experiment. Spinning sidebands are indicated by an asterisk (*). d) Relative intensity of the ¹⁹F NMR signal (\pm 0.1) corresponding to a diamagnetic NaF phase in *ex situ* samples stopped at various states of charge.

Table S6, Summary of Observed Conversion by ${}^{23}Na$ *NMR Compared to the Electrochemical Capacity.* Summary of ${}^{23}Na$ NMR *ex situ* characterization of conversion products and the expected capacity if conversion occurs through Reaction Path A (Fe⁰) or B (Fe²⁺). The observed capacity at each point for the different cells are shown in the last column.

	²³ Na NMR Characterization							
	Phase mol % (± 5%)		Phase mol % (± 5%) adjusted by initial NaF		Expected Capacity (mAh/g) for Each Reaction Path		Observed Capacity (mAh/g)	
	Na ₃ FeF ₆	NaF	Na ₃ FeF ₆	NaF	A (Fe ⁰)	B (Fe ²⁺)		
			MW	thick				
Pristine	84%	16%						
C-coated	80%	20%						
DC 1.3 V	47%	53%	58%	42%	36	17	16	
DC 0.65 V	31%	69%	39%	61%	70	32	100	
C 4 V	44%	56%	53%	47%	43	20	29	
			BM	thick	·			
Pristine	99%	1%						
C-coated	97%	3%						
DC 0.65 V	37%	63%	38%	62%	73	33	87	
C 4 V	58%	42%	59%	41%	34	16	31	
BM thin								
DC 1.3 V	77%	23%	91%	9%	3	6	17	
DC 0.65 V	43%	57%	44%	56%	58	27	81	
C 4 V	70%	30%	72%	28%	21	10	38	

Supplemental Note 2, Identification of Oxidation State of "Reduced-Fe" Species Present in ex situ BM Thin Discharged Samples

The "reduced-Fe" species observed via ⁵⁷Fe Mössbauer may correspond to a surfacecomponent of superparamagnetic Fe⁰ nanoparticles,¹⁰ as would be expected from the previously proposed reaction mechanism for Na₃FeF₆.¹¹ Alternatively, the "reduced-Fe" signal has an isomer shift similar to high spin Fe²⁺ species, such as in FeF₂ ($\delta = 1.36$ mm/s, $\Delta E_Q = 2.79$ mm/s)¹², but with a much smaller ΔE_Q . This small ΔE_Q indicates a more isotropic charge density around the Fe²⁺ species as compared to FeF₂, *e.g.*, due to fast electron hopping between Fe species on the timescale of the Mössbauer experiments, as in a mixed valent Fe²⁺/Fe³⁺ phase ^{13,14}. To differentiate between the presence of Fe²⁺ species or Fe⁰ nanoparticles, XPS and magnetometry measurements were carried out on *ex situ* BM thin samples.

XPS spectra shown in Figure S7a were fitted with one peak to the Fe³⁺ $2p_{3/2}$ state and one peak to the Fe²⁺ $2p_{3/2}$ state at 715 eV and 711 eV binding energy (BE), respectively, similarly to fits on Li₃FeF₆ reported elsewhere.¹⁵ At higher BE within the Fe $2p_{3/2}$ envelope, another peak is ascribed to surface structures and/or a Fe²⁺ satellite peak.¹⁶ The pristine XPS spectrum features both Fe³⁺ and Fe²⁺ due to the reduction of surface Fe²⁺ species induced by the high-energy milling synthesis technique. As the *ex situ* samples were carbon-coated and mixed with a polymeric binder, their overall intensity is decreased compared to the pristine material. The *ex situ* sample obtained upon 0.65 V discharge exhibits an increased Fe²⁺ to Fe³⁺ signal ratio which decreases slightly in the sample obtained on subsequent charge to 4 V, suggesting the presence of Fe²⁺ species in the discharged sample, with minimal reversibility on charge. Fe⁰ $2p_{3/2}$ (707 eV BE) and $2p_{1/2}$ (720 eV BE) signals are not observed but the overlapping of F 1*s* plasmon loss peaks near the Fe 2penvelope may obscure this signal if Fe⁰ is present in small amounts. Thus, these results suggest that Fe²⁺ is present rather than Fe⁰, at least at the surface of the particles.

Magnetic hysteresis curves at 2K (Figure 5b) for the BM thin pristine and 0.65 V discharged samples show characteristic paramagnetic behavior, reaching a saturation magnetization (M_s) at high fields proportional to the number of unpaired electrons on each magnetic ion (μ_B /Fe). The M_s decreases in the discharged sample (3.34 μ_B /Fe) compared to the pristine (4.61 μ_B /Fe) in line with the formation of Fe²⁺ on discharge from Fe³⁺ (5 μ_B /Fe³⁺, 4 μ_B /Fe²⁺), with slightly smaller M_s values obtained than theoretically predicted due to the weak antiferromagnetic interactions present in Na₃FeF₆ as discussed earlier. Magnetic susceptibility data (Figure S6) are consistent with these results, and μ_{eff} values obtained from Curie-Weiss fits are equal to 5.80 μ_B and 5.05 μ_B per Fe atom for the pristine and 0.65 V discharged Na₃FeF₆ samples, respectively. Thus, these results along with our previous XPS and ⁵⁷Fe Mössbauer results, indicate that this "reduced-Fe" species is an amorphous Fe²⁺-containing phase that may possibly also contain Fe³⁺ species.

Figure S7, XPS and Magnetometry of ex situ BM thin Na_3FeF_6 . a) XPS spectra (black dots) with corresponding fits (yellow) for BM pristine Na₃FeF₆ and for thin discharged and charged *ex situ* electrodes show an increase in Fe²⁺ (dark blue) upon discharge compared to Fe³⁺ (cyan). b) Magnetization vs. field measurements for BM pristine Na₃FeF₆ and for thin *ex situ* discharged electrodes at 2 K showing an overall decrease of magnetization for the discharged sample.

Figure S8, ⁵⁷*Fe Mössbauer of Chemically Reduced BM-Na*₃*FeF*₆. ⁵⁷Fe Mössbauer spectra for chemically reduced BM-Na₃FeF₆ fitted with 58% bulk Fe⁰ ($\delta = 0 \text{ mm/s}$, green), 39% O_h-Fe³⁺ in Na₃FeF₆ ($\delta = 0.27 \text{ mm/s}$, cyan), and 3% Fe²⁺ ($\delta \approx 1.16 \text{ mm/s}$ and $\Delta E_Q \approx 0.2 \text{ mm/s}$, orange) similar to that seen in the *ex situ* samples.

*Figure S9, SEM and Electrochemical Testing of Particle Size Reduction of BM-Na*₃*FeF*₆. Particle size reduction of BM-Na₃*FeF*₆ was completed by adding an additional 12 hr ball-milling step with five 10 mm and ten 5 mm ZrO₂ balls following the previous 24 hr ball-milling step. a) SEM images of the extended BM-Na₃FeF₆ particles. 24 hr BM C-Coating and extended C-coating BM-Na₃FeF₆ thin cells comparison of their b) first two charge and discharge cycles (C/20 rate) and c) discharge capacity retention for Na₃FeF₆ cells (filled symbols) and for Na₃FeF₆ cells with the corresponding blank cell capacity subtracted (unfilled symbols). d) First two charge and discharge cycles for the extended BM-Na₃FeF₆ thin cells at various rates.

References

- 1 E. N. Matvienko, O. V. Yakubovich, M. A. Simonov, A. N. Ivashchenko, O. K. Mel'nikov and N. V. Belov, The crystal structure of the synthetic Fe-cryolite Na3FeF6, *Dokl. Akad. Nauk SSSR*, 1981, **257**, 105–108.
- 2 Y. Shirako, Y. G. Shi, A. Aimi, D. Mori, H. Kojitani, K. Yamaura, Y. Inaguma and M. Akaogi, High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3, *J. Solid State Chem.*, 2012, **191**, 167–174.
- J. Kim, D. S. Middlemiss, N. A. Chernova, B. Y. X. Zhu, C. Masquelier and C. P. Grey, Linking local environments and hyperfine shifts: A combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic Fe(III) phosphates, *J. Am. Chem. Soc.*, 2010, **132**, 16825–16840.
- 4 C. Delmas, D. Carlier, G. Ceder, M. Ménétrier and C. P. Grey, Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations, *Phys. Rev. B*, 2003, **67**, 174103.
- 5 R. J. Clément, D. Kitchaev, J. Lee and Gerbrand Ceder, Short-Range Order and Unusual Modes of Nickel Redox in a Fluorine-Substituted Disordered Rocksalt Oxide Lithium-Ion Cathode, *Chem. Mater.*, 2018, **30**, 6945–6956.
- 6 L. R. Walker, G. K. Wertheim and V. Jaccarino, Interpretation of the 57Fe Isomer Shift, *Phys. Rev. Lett.*, 1961, **6**, 98–101.
- G. K. Wertheim, H. J. Guggenheim and D. N. E. Buchanan, Sublattice magnetization in FeF3 near the critical point, *Phys. Rev.*, 1968, **169**, 465–470.
- 8 I. D. Gocheva, M. Nishijima, T. Doi, S. Okada, J. ichi Yamaki and T. Nishida, Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries, *J. Power Sources*, 2009, **187**, 247–252.
- 9 U. K. Dey, N. Barman, S. Ghosh, S. Sarkar, S. C. Peter and P. Senguttuvan, Topochemical Bottom-Up Synthesis of 2D- and 3D-Sodium Iron Fluoride Frameworks, *Chem. Mater.*, 2019, **31**, 295–299.
- 10 P. Liao, B. L. MacDonald, R. A. Dunlap and J. R. Dahn, Combinatorially prepared [LiF]1xFex nanocomposites for positive electrode materials in li-ion batteries, *Chem. Mater.*, 2008, **20**, 454–461.
- 11 R. A. Shakoor, S. Y. Lim, H. Kim, K. W. Nam, J. K. Kang, K. Kang and J. W. Choi, Mechanochemical synthesis and electrochemical behavior of Na3FeF6 in sodium and lithium batteries, *Solid State Ionics*, 2012, **218**, 35–40.
- 12 G. K. Wertheim and D. N. E. Buchanan, Temperature dependence of the Fe57 hfs in FeF2 below the Néel temperature, *Phys. Rev.*, 1967, **161**, 478–482.
- 13 R. N. Panda, N. S. Gajbhiye and G. Balaji, Magnetic properties of interacting single domain Fe3O4 particles, *J. Alloys Compd.*, 2001, **326**, 50–53.
- 14 P. Gütlich, Fifty years of Mössbauer spectroscopy in solid state research Remarkable achievements, future perspectives, *Z. Anorg. Allg. Chem.*, 2012, **638**, 15–43.
- A. Basa, S. Wojtulewski, B. Kalska-Szostko, M. Perkowski, E. Gonzalo, O. Chernyayeva,
 A. Kuhn and F. García-Alvarado, Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries, *J. Mater. Sci. Technol.*, 2020, 55, 107–115.

16 A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, *Surf. Interface Anal.*, 2004, 36, 1564–1574.