Exploring the thermodynamic, kinetic and inhibitory mechanisms of

5-iTU targeting mitotic kinase haspin by integrated molecular

dynamics

Qianqian Wang,^a Qinggao Zhang,^a Elaine Lai Han Leung,^b Yingqing Chen,^{*a} and Xiaojun Yao^{*b}

^aChronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China

^bDr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China

*Corresponding authors.

E-mail addresses: chenyq1211@163.com (Yingqing Chen), xjyao@must.edu.mo (Xiaojun Yao) Tel.: +853-8897-2438 Fax: +853-2882-5886

Figure S1. Degree of freedom considered in the standard binding free energy calculation strategy. Euler and spherical angles describe the relative orientation and position of inhibitors with respect to haspin, respectively.

Figure S2. Time series of RMSDs of 5-iTU derivatives and WT/F605Y/F605T haspin active site (protein heavy atoms within 5 Å of inhibitor) for each system. Note: the relative significant RMSD variations in 5-iTU and WT/F605Y/F605T haspin complexes were not induced by their structural changes, but the lack coordinate records of random simulations with the common parameter setting "ntwx=1000". Inset showed that the complexes aligned very well before and after RMSD fluctuations in each system.

Figure S3. Binding modes of haspin with 5-iTU and derivatives. The green dashed lines represent the hydrogen bond interactions.

Figure S4. Time series of potentials of mean force (PMF) RMSDs averaged for stages in each step for each system.

Figure S5. The Gaussian distribution of dissociation time for each snapshot in each system.