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SI 1. Pore size distribution of track etched membranes. 
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Figure SI1 – Pore size distribution obtained from SEM images of different track-etched 

membrane TE_100 nm (a), TE_200 nm (b), TE_700 nm (c), TE_1500 nm (d).
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SI 2. Dependence of discharge coefficient vs Reynolds number
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SI 3. The dependence of normalized thrust vs. normalized mass flow for helium, nitrogen, carbon 

dioxide and sulfur hexafluoride measured for all membranes.

1E-3 0.01 0.1 1 10 100

10

100

1000

10000

100000
100 nm           700 nm

 SF6      SF6  
 CO2     CO2

 N2        N2

 He       He
200 nm          1500 nm

 SF6      SF6

 CO2     CO2

 N2        N2 
 He       He

 

 

Th
ru

st
/A

re
a,

 N
/m

2

Mass flux/Area, kg/(m2 s)



5

SI 4. 

For expansion of a gas from approximately atmospheric conditions to near vacuum, the fluid 

velocity might reach the speed of sound and choked flow conditions may occur. In the foregoing, 

e.g., by application of Eq. (2), no account was taken of the possibility of choked flow. Hence, in 

the following, the flow is investigated by considering the purely viscous flow of a continuum 

through the pores. A rather crude model is applied, viz., it is assumed that the gas expands 

isentropically from its stagnation conditions, given by the plenum pressure and temperature, to the 

state at the upstream front of the membranes. For the flow through the membrane pores a fully 

developed, one dimensional flow through a straight duct is assumed.  Equations for the isentropic 

expansion and for the adiabatic and the isothermal flow through a straight duct are given in 

textbooks on gas dynamics [1]. Denoting the stagnation conditions with zero (0), the state of the 

fluid in front of the membrane as 1, e.g., P1 or Ma1, and the state in the exit plane as 2, the ratio of 

P1 to the stagnation pressure is given by the isentropic condition,

   (A)

𝑃0
𝑃1
= (1 + 𝛾 ‒ 12 𝑀𝑎21)

𝛾
𝛾 ‒ 1.

The mass flux is given by

  (B)
𝜌1𝑣1 =

2𝛾
𝛾 ‒ 1(1 ‒ (𝑃1𝑃0)

𝛾 ‒ 1
𝛾 )(𝑃1𝑃0)

1
𝛾

𝑃0
𝑅𝑇0𝑀

and the Reynolds number is

   (C)
𝑅𝑒=

𝜌1𝑣1𝑑

𝜂
.

For adiabatic flow through a long duct, the maximum length Lmax, i.e., the length for which in the 

exit plane Mach number unity is reached, Ma2 = 1, is given by [1, eq. (6.21)]

   (D)

𝐿𝑚𝑎𝑥𝑓𝐷
𝑑

=
1 ‒ 𝑀𝑎2

𝛾𝑀𝑎2
+
𝛾+ 1
2𝛾

𝑙𝑛( (𝛾+ 1)𝑀𝑎2

2(1 + (𝛾 ‒ 1)𝑀𝑎2 2)),
where Lmax counts from the position where the Ma is evaluated, and fD is the Darcy-Weissenbach 

friction factor. Here, the flow is always laminar, hence fD = 64/Re. 

To compute the adiabatic, compressible flow through the pores, first the critical downstream 

pressure P*, i.e., the pressure at which Ma = 1 in the exit plane is reached, is determined. Setting 

fD to 64/Re in eq. (D), substituting for Re from eq. (C) and further substituting for ρ1v1 and P1 from 

eqs. (B) and (A), respectively, yields a function Lmax/d = f(Ma1, P0). Finding the root of the  

equation L/d - Lmax/d = 0 yields Ma1, the Mach number in the entry plane of the pore, for which 

P2 = P* is reached, i.e., Ma2 = 1. The remaining values are determined from substituting back for 

Ma1 into eqs. (A) to (C).
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The pressure in the exit plane is determined from an expression for the ratio of the pressure at an 

arbitrary location in the duct to the critical pressure 1, eq. (6.22),

   (E)

𝑃

𝑃 ∗
=

1
𝑀𝑎

𝛾+ 1

2(1 + (𝛾 ‒ 1)𝑀𝑎2 2).

From above, Ma1 and P1 is known, hence eq. (E) yields P*.

If the downstream pressure Pe is smaller than the critical pressure P*, this is already the solution. 

The flow is choked, Ma2 = 1 is reached in the exit plane of the pore, and the gas expands to the 

downstream pressure after leaving the pore.

If the downstream pressure Pe is larger than P*, the flow is calculated by combining eqs. (A) and 

(E),

   (F)

𝑃0
𝑃2
=
𝑃0
𝑃1

𝑃1

𝑃 ∗

𝑃 ∗

𝑃2
=
𝑀𝑎2
𝑀𝑎1 (1 + 𝛾 ‒ 12 𝑀𝑎21)(1 + 𝛾 ‒ 12 𝑀𝑎22).

With P0 and P2 known, eq. (F) is an quadratic in either Ma1 or Ma2. Likewise,

   (G)𝐿= 𝐿𝑚𝑎𝑥(𝑀𝑎1) ‒ 𝐿𝑚𝑎𝑥(𝑀𝑎2)

is, after substitution from eqs. (A) to (C), also an equation in the two unknowns Ma1 and Ma2. Eqs. 

(F) and (G) can be solved to yield the Mach numbers, P1 from eq. (A) and the mass flux from eq. 

(B).

For isothermal flow, eqs. (D) and (E) must be replaced by [1, eq. (6.36)]

   (H)

𝐿𝑚𝑎𝑥𝑓𝐷
𝑑

=
1

𝛾𝑀𝑎2
‒ 1 + 𝑙𝑛(𝛾𝑀𝑎2)

and [1, eq. (6.39)]

    (I)

𝑃

𝑃 ∗
=

1
𝛾𝑀𝑎

,

respectively, noting that the maximum Mach number for isothermal flow is . Otherwise, the 1 𝛾

solution of the equations for isothermal flow is obtained analogously.

For comparison, the results for isentropic flow throughout are obtained by applying eq. (A) to the 

downstream state,

   (J)

𝑃0
𝑃2
= (1 + 𝛾 ‒ 12 𝑀𝑎22)

𝛾
𝛾 ‒ 1

and

   (K)

𝑃0

𝑃 ∗
= (1 + 𝛾 ‒ 12 )

𝛾
𝛾 ‒ 1.

Figure SI4 shows the ratio of the critical pressure to the background pressure, P*/Pe versus the 

Knudsen number at the mean pressure in the pores. Figure SI 4 shows the results for adiabatic 

flow, eqs. (A) to (G), isothermal flow, eqs. (A) to (C), (H), (I), and isentropic flow, eqs. (J) and 
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(K). For P*/Pe larger than 1, the flow is choked, and the velocity that is computed assuming a 

combination of viscous and Knudsen flow might be in error. However, for Knudsen numbers 

approaching and exceeding unity, a viscuous, continuum description becomes more and more 

inaccurate.
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Figure SI 4. The dependence of P*/Pe ratio vs. average Knudsen number for isentropic, adiabatic, 

isothermal flow. 
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