Electronic Supplementary Information

Surface Characterization and Methane activation on a SnO_x/Cu₂O/Cu(111) Inverse Oxide/Metal Catalysts

Jindong Kang,^{‡a} Ning Rui,^{‡b} Erwei Huang,^{‡a} Yi Tian,^a Mausumi Mahapatra,^b Rina Rosales,^a Ivan Orozco,^a Rui Shi,^a Sanjaya D. Senanayake,^b Ping Liu,^{a,b} and José A. Rodriguez^{*a,b}

a. Department of Chemistry, SUNY at Stony Brook, Stony Brook, NY, 11794 USA.

b. Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973 USA

⁺ All these authors contributed in equal terms to this research.

* Corresponding author, E-mail: rodriguez@bnl.gov

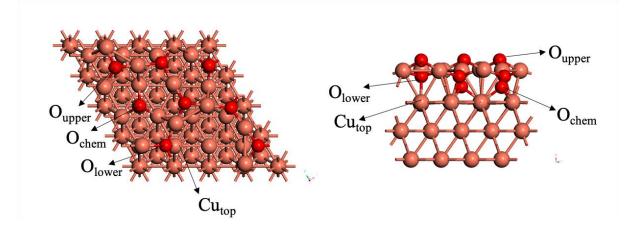
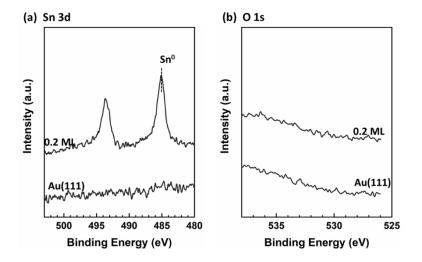
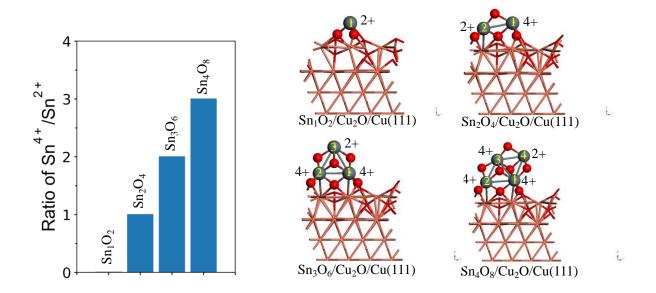
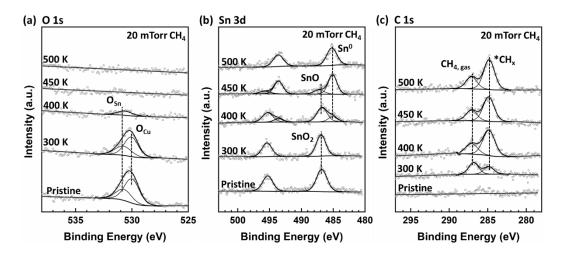




Fig. S1 Top (left) and side (right) view of Cu_mO/Cu(111) DFT model; Cu: brown; O: red.


Notes: The DFT-optimized atomic structure of $Cu_mO/Cu(111)$ (m ≈ 1.13) is shown in Figure. S1. Specifically, the Cu(111)-supported Cu_{1.13}O includes three types of oxygen species depending on their unique location, O_{chem}, O_{upper} and O_{lower} atoms, where both O_{chem} and O_{lower} bind with bottom Cu(111) surface directly. By including these directly bound Cu sites from Cu(111), the Cu_mO layer can reach to Cu₂O. Our previous studies have shown that such model system described well the 44 structure as observed (Ref. S1, Ref. S2). The 44 structure was observed on exposing Cu(111) to oxidizing atmosphere. I t is a Cu(111)-supported Cu_xO layer, which is different from Cu₂O(111) in term of atomic arrangement and chemical activity (Ref. S1).

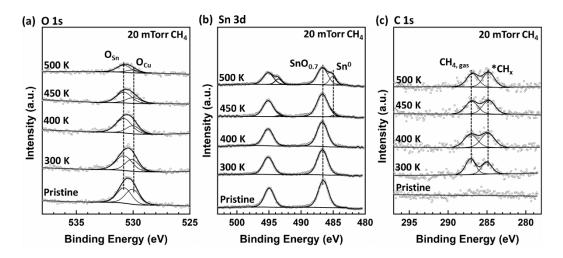

Fig. S2 (a) Sn 3d and (b) O 1s XPS spectra of pristine Au(111) and Sn/Au(111) surfaces. Coverage is estimated to be 0.2 ML. Sn was vapor deposited on the Au(111) surface under a background pressure of 5 x 10-7 torr of oxygen at 450 K.

Fig. S3 (left) Distribution for Sn^{4+}/Sn^{2+} ratios of Sn_xO_y clusters supported by Cu₂O/Cu(111) based on Bader charge analysis; (right) Detailed distribution of Sn^{4+} and Sn^{2+} for $Sn_xO_y/Cu_2O/Cu(111)$ models.

Fig. S4 (a) O 1s, (b) Sn 3d and (c) C 1s regions in AP-XPS spectra for the SnO₂/Cu₂O/Cu(111) surface ($\theta_{SnO2} \sim 0.1$ ML) when exposed to 50 mTorr of CH₄ at different temperatures.

Fig. S5 (a) O 1s, (b) Sn 3d, and (c) C 1s regions in AP-XPS spectra for the SnO₂/Cu₂O/Cu(111) surface ($\theta_{snO2} \sim 0.6$ ML) when exposed to 50 mTorr of CH₄ at different temperatures.

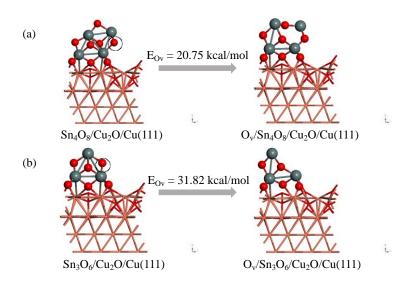


Fig. S6 Oxygen vacancy (O_v) formations on (a) Sn₄O₈/Cu₂O/Cu(111) and (b) Sn₃O₆/Cu₂O/Cu(111) models; The studied Sn⁴⁺-O-Sn²⁺ bridge O was indicated by the dashed circle.

References:

S1 W. An, A. E. Baber, F. Xu, M. Soldemo, J. Weissenrieder, D. Stacchiola, P. Liu, *ChemCatChem* **2014**, *6*, 2364-2372.

S2 W. An, F. Xu, D. Stacchiola, P. Liu, *Chemcatchem* **2015**, *7*, 3865-3872.