Electronic Supplementary Information

Fast kinetics of monoclinic VO₂(B) bulk upon magnesiation via

DFT+U calculation

Danmei Gao^a, Jingren Dong^e, Renchao Xiao^{a,d}, Bo Shang^a, Danmei Yu^a, Changguo Chen^a, Yuping Liu^{*a,b,c,e}, Kai Zheng^{*c}, Fusheng Pan^b

^a College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China, E-mail:liuyuping@cqu.edu.cn

^{b.} National Engineering Research Centre for Magnesium Alloys, Chongqing University, Chongqing, 400044, China,

^c State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China, Email:zkcqu@cqu.edu.cn

^d. Huading Guolian Sichuan Automotive Battery Co. Ltd., Chengdu, 610399, PR China, E-mail::1053576360@qq.com

e. Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China, Email: dongjingren@cqu.edu.cn

AUTHOR INFORMATION

Corresponding author:

Name: Yuping Liu

Tel: +86 13594157660

E-mail: <u>liuyuping@cqu.edu.cn</u>

Name: Kai Zheng

E-mail: zkcqu@cqu.edu.cn

1. Supporting Figure

Fig. S1. Polyhedron configurations of VO₂(B) crystal: (a) (010) direction; (b) (001) direction.

Fig. S2 The binding energies E_b of a single magnesium ion insertion into the $1 \times 1 \times 2$ supercell of $VO_2(B)$ in different calculation conditions.

Fig. S3 Various configurations of $Mg_{0.125}VO_2(B)$ in the FM and AFM states.

Fig. S4 Different configurations of $Mg_{0.25}VO_2(B)$ in the FM states

Fig. S5 Different configurations of $Mg_{0.25}VO_2(B)$ in the AFM states

Fig. S6 O-O distance evolution near the diffusion path with and without van der Waals forces

Fig. S7 The transition state configurations with the highest energy barrier in respective pathways and the corresponding distances between Mg^{2+} and surrounding O atom

2. Supporting Tables

Table. S1 Optimized and experimental lattice parameters/energies of $1 \times 1 \times 2$ supercell for $VO_2(B)$ in the four states

	a(Å)	b(Å)	c(Å)	$V(Å^3)$	Er (%)	Energy(eV)
Exp	12.03	3.693	12.84	546.67	-	-
FM	12.10	3.74	13.31	579.45	6.00	-350.49
FM-vdW	12.09	3.74	13.31	579.44	6.00	-359.66
AFM	12.26	3.86	12.84	582.87	6.62	-351.04
AFM-vdW	12.16	3.83	12.78	572.45	4.71	-360.31

Table. S2 The formation energies of $Mg_{0.125}VO_2(B)$ in different configurations

Mg _{0.125} VO ₂ (B)	E_{f} (P1)/eV	E_{f} (P2)/eV	E_{f} (P3)/eV	E_{f} (P4)/eV	E_{f} (P5)/eV	E_{f} (P6)/eV
FM-vdW	-3.37	-3.23	-3.14	-2.95	-3.09	-2.76
AFM-vdW	-1.66	-1.87	-2.05	-1.86	-1.94	-1.35

Table. S3 The formation energies of Mg_{0.25}VO₂(B) in different configurations

Mg _{0.25} VO ₂ (B)	$E_{f}(Q1)/eV$	$E_{f}(Q2)/eV$	$E_{f}(Q3)/eV$	$E_{f}(Q4)/eV$	$E_{f}(Q5)/eV$
FM-vdW	-6.35	-6.11	-6.12	-5.85	-5.77
AFM-vdW	-5.16	-5.09	-5.00	-5.37	-5.02

Table. S4 The formation energies of Mg_xVO_2(B) (0 \leqslant x \leqslant 1.25) in the FM-vdW, AFM-vdW, FM and AFM states

$Mg_xVO_2(B)$	E _{FM-vdW} (eV)	E _{AFM-vdW} (eV)	E _{FM} (eV)	E _{AFM} (eV)
Mg _{0.125} VO ₂ (B)	-371.71	-371.40	-361.04	-361.34
Mg _{0.25} VO ₂ (B)	-383.80	-383.51	-372.54	-371.68
Mg _{0.5} VO ₂ (B)	-406.50	-406.80	-393.60	-393.60
MgVO ₂ (B)	-438.37	-439.34	-421.35	-422.95
Mg _{1.25} VO ₂ (B)	-453.09	-454.84	-432.71	-434.25

Images	1	2	3	4	5	6	7	8
Path1	0.55 Å	1.05 Å	1.54 Å	2.05 Å	2.57 Å	3.05 Å	3.55 Å	4.10 Å
Path1-vdW	0.52 Å	1.00 Å	1.45 Å	1.94 Å	2.44 Å	2.89 Å	3.36 Å	3.88 Å
Path2	0.43 Å	0.92 Å	1.47 Å	2.02 Å	2.51 Å	2.94 Å	3.31 Å	3.68 Å
Path2-vdW	0.37 Å	0.79 Å	1.28 Å	1.84 Å	2.39 Å	2.88 Å	3.30 Å	3.67 Å
Path3	0.54 Å	1.24 Å	1.94 Å	2.47 Å	2.51 Å	2.86 Å	3.33 Å	3.68 Å
Path3-vdW	0.56 Å	1.32 Å	2.12 Å	2.70 Å	2.64 Å	2.97 Å	3.48 Å	3.76 Å

Table. S5 The jumping distance starting from the initial state during the Mg²⁺ migration process