
SUPPLEMENTARY INFORMATION

Exploring the validity of the Stokes-Einstein relation in

supercooled water using nanomolecular probes

Sharon Berkowicza and Fivos Perakisa,∗

a Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.

∗ E-mail: f.perakis@fysik.su.se

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021



S1 Langevin dynamics

In order to analytically model the observed probe dynamics we used the Langevin equation

mr̈rr(t) =−ζ ṙrr(t)+RRR(t), (S1.1)

where rrr = (x,y,z) is the position, ζ is the friction coefficient and RRR(t) is a randomly non-correlated fluctuating force that fulfills

〈RRR(t)〉= 0 and 〈Ri(t)R j(s)〉= 2ζ kBT δi jδ (t− s), the latter criteria being a result of the fluctuation-dissipation theorem1. Adopting the

formalism in Ref. 2, we have in the diffusive limit (also known as the overdamped or zero-mass limit):

ṙrr(t) =
1
ζ

RRR(t) = (S1.2a)

=

√
2kBT

ζ
WWW (t) =

√
2D WWW (t), (S1.2b)

⇒ ∆x(t) =
√

2D∆t W (t), (S1.2c)

where WWW (t) is white noise with 〈WWW (t)〉= 0 and 〈Wi(t)W j(s)〉= δi jδ (t− s). In the second step of eq. (S1.2b) viscous flow is assumed with

the friction coefficient given by Stokes law, ζ = 6πηRh, followed by substitution with the Stokes-Einstein relation, eq. (4).

Furthermore, the last equation (eq. (S1.2c)) is the displacement along one dimension, assuming small time steps ∆t. The total

mean-square displacement (MSD) for small ∆t in three dimensions is thus given by

〈∆r(t)2〉 = 〈(∆x(t)2 +∆y(t)2 +∆z(t)2)〉. (S1.3a)

For the numerical calculation of the above MSD we utilized the Matlab code given in Ref. 2.

Lastly, at large t the analytical form of the MSD, that can be derived from eq. (S1.1), reduces to

lim
t→∞
〈∆r(t)2〉 = 6Dt, (S1.4a)

hence reflecting the linear time dependence that is characteristic of diffusive motion.

S2 The mean-squared displacement

While dynamics captured by DLS is readily analyzed in terms of the intensity autocorrelation function g2, it may also be converted into

the mean-squared displacement (MSD), i.e. by substitution of eq. (S1.4a) and eq. (3) into the exponential decays of eq. (2) and

solving for the MSD3,4. The resulting MSD as a function of time for the three probe sizes at different temperatures are given in Fig. S1.

For PHF (Fig. S1c) we show here only the MSD for the fast g2 component at short times, for which the amplitude of the slow

component is nearly constant and equals its contrast (i.e. β2 in eq. (2b)). The MSD provides additional information from the g2

functions since it is averaged over all momentum transfers Q. Within the experimental window, all probes display MSD with linear

time dependence, indicating diffusive motion. The diffusive character of the MSD is further emphasized and consistent with the

numerically calculated MSD based on Langevin dynamics (see section S1), as shown by the black solid lines at the highest and lowest

temperature (299 K and 260 K). In accordance with the 1/Q2-dependence of the relaxation time constant, the above observations

further confirm the translational motion of all studied probes as overall diffusive in nature, which in the view of the Langevin
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Fig. S1 The DLS data of the probe dynamics presented in the form of the mean-squared displacement (MSD), 〈∆r(t)2〉, at different temperatures.
Unlike the g2 functions in Fig. 1, the MSD is averaged over all scattering angles and thus represents the dynamic information independent of the
momentum transfer Q. Experimental data is indicated by solid dots while the solid black lines refer to fitted numerical results based on Langevin
dynamics (see section S1)2. Panel (a) shows the MSD of silica spheres with Rh = 66 nm, (b) silica spheres with Rh = 13 nm and (c) the fast component
of PHF.

dynamics framework suggests that the probe motion is predominantly driven by random fluctuations of the surrounding water

molecules and governed by viscous flow.
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