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Explanation of VAE loss

In Fig. S1 we show the special loss, or objective function, used in VAEs as a function of 

training epoch for both the training and validation data sets for the XANES and VtC-XES 

datasets. This special loss is defined as the mean of the reconstruction loss (binary cross entropy) 

and the Kullback-Leibler (KL) divergence. KL divergence ensures the VAE is fully utilizing the 

latent space by penalizing lost information. In general, it is given by 
𝐷𝐾𝐿 [𝑃(𝑧|𝑥)||𝑄(𝑧||𝑥)] =  𝐸[ 𝑙𝑜𝑔𝑃(𝑧|𝑥) ‒  𝑙𝑜𝑔𝑄(𝑧|𝑥) ] 

≡ ∑𝑃(𝑧│𝑥)𝑙𝑜𝑔
𝑃(𝑧│𝑥)
𝑄(𝑧│𝑥)

where P is the probability distribution and Q is the approximation of P. Thus, KL 

divergence identifies how much information it lost using the approximation Q. In a VAE 

objective function, z is the latent space representation of our data x, Q is the encoder, and P is the 

decoder. Thus, the KL divergence is

where log var(z) and mean(z) are the two parallel latent space 
‒

1
2∑1 + 𝑙𝑜𝑔𝜎2

𝑧 ‒ 𝜇2
𝑧 ‒ 𝜎2

𝑧

layers of the VAE. Moreover, KL divergence encourages the latent space to be centered around 

zero with normal variance and is therefore regularized. For an in depth derivation of VAE 

objective function, see Rocchetto et al. 1

A plot such as Fig. S1 is a useful heuristic for understanding training convergence and for 

evaluating the degree of overfitting or underfitting. To be specific, starting with the XANES, the 

losses plateau at about 20 epochs and the validation loss does not increase. This indicates that the 

resulting neural network is generalizable and is not overfitting and thus is likely to have high 

utility, i.e., it has not overfit such that it cannot address spectra outside the training data set but 

also enough detail has been encoded that most useful information has likely been incorporated. 

The VtC-XES shows a similar plateau in the VAE losses, which indicates this model is not 

overfitting as well.
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Increasing latent space dimension

Much as with PCA, where one must wisely choose the number of PCs to get a good 

representation of the training data set, we are also free to modify the dimension of the latent 

space for the VAE. This is investigated in Fig. S2 where representative XES spectra (one from 

each type) are compared to the corresponding decoded spectra as a function of the dimension of 

the latent space, starting with two dimensions on the left and proceeding to 50 dimensions at the 

right. Increasing the latent space dimension up to 50 dimensions does not drastically change the 

accuracy of the decoded spectra, as the most distinct features are obtained just from a two-

dimensional latent space. Hence, for the VTC-XES for this broad collection of sulphorganics, a 

two-dimensional representation VAE is enough to capture the most distinct spectral features, 

giving a dramatically effective encoding and dimensionality reduction.
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Hyperparameter tuning

Hyperparameters for all machine learning methods were selected using multiple 

validation sets separated from within the entire training set. The VAE was limited to one or two 

hidden layers for each the encoder and decoder with layer dimension sizes constrained to powers 

of two between 32 and 1024. The ANN classifier was also limited to one or two hidden layers 

with dimensions constrained to powers of two between 32 and 1024. Dropout was also 

constrained to be between 5% and 20% and implemented to encourage generalizability. The t-

SNE perplexity value was selected from values between 5 and 50, where the smallest perplexity 

value was chosen such that (a) there did not appear to be spurious or artificial clusters and (b) 

yielded consistent embeddings upon recalculation, indicating a global minimum was reached. 

The k nearest neighbor hyperparameter for KNN was then selected from a neighborhood of 

values around the t-SNE perplexity value, since both approximately represent cluster or group 

size. This was determined to be between 10 and 30. All other hyperparameters not specified in 

the manuscript were set to default values.
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FastICA, FA, and NMF

The three supplemental linear dimensionality reduction methods included in this study are Fast 

Independent Component Analysis (FastICA)2, Factor Analysis (FA)3, 4, and Non-negative Matrix 

Factorization (NMF)5. FastICA is an implementation of independent component analysis, which 

is a generalization of PCA. Often, independent component analysis is used to separate out 

independent signals, or components, contributing to data. However, because its aim is to 

calculated independent components, there is not a clear statistical method to reduce dimension, 

such as maximizing the explained variance as with PCA. Factor analysis (FA) is similar to PCA 

as well, except it calculates the eigenvalue decomposition on the reduced correlation matrix 

instead of the full correlation matrix. This analysis on the reduced correlation matrix helps 

identify latent, or hidden, features in the data, i.e., variables that cause correlated features in the 

original dataset. However, it has been shown that if the number of included datapoints is large 

enough (about 40), PCA and FA have similar results 6. Finally, non-negative matrix factorization 

(NMF) is another linear dimensionality reduction algorithm that assumes the data is (as the name 

suggests) non-negative, which is true for both XANES and XES spectra. NMF calculates two 

non-negative matrices whose product reproduces the original dataset. This encourages factors to 

be positive and thus more physically interpretable.
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Figure S1: Loss plotted against number of epochs

Fig. S1. Loss plotted against number of epochs for the VAE model for both the XANES data 

(blue) and the VtC-XES data (green). 
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Figure S2: Reconstructed VtC-XES spectra

Fig. S2. Reconstructed VtC-XES spectra with increasing latent space dimension.
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Figure S3: Schemes 1 and 2 confusion matrices

Fig. S3. Classification via NN: confusion matrices for XES and XANES for both categorization 

schemes: 1) oxidation and 2) bond type. 
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Figure S4: Scheme 3 confusion matrix: VtC-XES

Fig. S4. Classification via NN: confusion matrices for VtC-XES for classification of aromatic 

versus aliphatic compounds within Types 1 to 5.
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Figure S5: Scheme 3 confusion matrix: XANES

Fig. S5. Classification via NN: confusion matrices for XANES for classification of aromatic 

versus aliphatic compounds within Types 1 to 5.
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Figure S6: Dimensionally reduced spaces

Fig. S6. Unsupervised dimension reduction: VAE, t-SNE, FastICA, PCA, FA, and NMF for 
VtC-XES (left) and XANES (right), color-coded by sulfur bonding Type. 
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Figure S7: Oxidation KNN: VtC-XES

Fig. S7. KNN classification for Oxidation for VtC-XES.



S13

Figure S8: Oxidation KNN: XANES

Fig. S8. KNN classification for Oxidation for XANES.
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Figure S9: Sulfur Type KNN: VtC-XES

Fig. S9. KNN classification for sulfur bond Type on VAE, t-SNE, FastICA, PCA, FA, and NMF 

for VtC-XES.
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Figure S10: Sulfur Type KNN: XANES

Fig. S10. KNN classification for sulfur bond Type on VAE, t-SNE, FastICA, PCA, FA, and 

NMF for XANES.
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Figure S11: Aromaticity KNN: VtC-XES

Fig. S11. KNN classification for Aromaticity for VtC-XES.
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Figure S12: Aromaticity KNN: XANES

Fig. S12. KNN classification for Aromaticity for XANES.
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Figure S13: Accuracy for increasing latent dimension

Fig. S13. Accuracy of KNN classification schemes on the PCA, VAE, and t-SNE reduced spaces 

for VtC-XES (top) and XANES (bottom) while increasing the latent or embedding dimension, D.
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