Supplementary Information for

Phase transition and chemical reactivity of 1H-tetrazole under high pressure up to 100 GPa

Dexiang Gao,ª Xingyu Tang,ª Xuan Wang,ª Xin Yang,ª Peijie Zhang,ª Guangwei Che,ª Jun Han,ª Takanori Hattori,^b Yajie Wang,ª Xiao Dong,^c Haiyan Zheng, ^{*,}ª Kuo Li,ª Ho-

kwang Mao^a

^a Center for High Pressure Science and Technology Advanced Research, Beijing

100094, P. R. China

^b J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

^c Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, P. R. China

*E-mail: zhenghy@hpstar.ac.cn

Figure S1. Raman frequency shifts of 1H-tetrazole as a function of pressure in the range of (a) 50-400 cm⁻¹ and (b) 600-3500 cm⁻¹. Vertical solid line represents the beginning of phase transition and vertical dotted line represents the end of phase transition.

Figure S2. IR frequency shifts of 1H-tetrazole as a function of pressure in the range of (a) 600-1400 cm⁻¹and (b) 1400-3400 cm⁻¹. Vertical solid line represents the beginning of phase transition and vertical dotted line represents the end of phase transition.

Figure S3. XRD patterns of the 1H-tetrazole recovered from high pressure. 1H-tetrazole undergoes a reversible phase transition process in compression-decompression cycle up to 60.0 and 75.0 GPa. The sample decompression from 75.0 GPa has strong orientation.

Figure S4. a) Raman and b) IR spectra of the 1H-tetrazole recovered from 100.3 GPa. As show in the IR spectra, the products after decompressing to ambient pressure from 100.3 GPa are still the 1H-tetrazole while strong background exists in Raman spectra.

Figure S5. The Rietveld refinement results of the XRD patterns of phase I at 0.3 GPa and phase II at 100.3 GPa.

Figure S6. Optimized lattice parameters of phase I under high pressure. Above 4 GPa, the lattice parameters obviously change. The experimental data of phase I (0.3 GPa) and phase II (8.4 GPa) are also shown for comparison.

Label	Х	Ŷ	Z	
N1	0.1426	0.1672	0.8605	
N2	0.3064	0.4268	0.8357	

N3	0.3116	0.3460	0.5544
N4	0.1541	0.0383	0.3982
C5	0.0520	-0.0660	0.5963
D1	0.0942	0.1628	0.0124
H5	-0.0732	-0.2588	0.5479

Note: The uncertainty of the atomic coordinates is not provided by the software under the rigid body restrictions.

	100.3 GPa	Polymer 1	Polymer 2
<i>a</i> (Å)	2.567 (2)	2.591	2.361
b (Å)	3.691 (8)	3.355	3.673
<i>c</i> (Å)	3.825 (9)	4.577	4.038
α (°)	107.7 (4)	109.83	114.50
β (°)	95.67 (17)	117.91	89.84
γ (°)	92.95 (10)	94.76	93.89

XRD and simulation	results,	respectively
--------------------	----------	--------------