Electronic supplementary information for photoelectron
photofragment coincidence spectroscopy of aromatic
carboxylates: benzoate and p-coumarate

J. A. Gibbard, E. Castracane, A. I. Krylov and R. E. Continetti

\hfill

\begin{itemize}
\item[a] Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, Ca, 92093-0340. E-mail: rcontinetti@ucsd.edu
\item[b] Department of Chemistry, University of Southern California, Los Angeles, Ca, 90089-0482
\end{itemize}
1 Molecular structures

Figure S1: The structure of benzoic acid and p-coumaric acid.

Figure S2: The resonance structures of the carboxylate and phenolate forms of p-CA$^-$.
2 Fragment mass spectra

Figure S3: The fragment mass spectrum resulting from two-body DPD of 11 keV BzCO$_2^-$ at 266 nm.

Figure S4: The two-body fragment mass spectrum of 11 keV p-CA$^-$ recorded at 266 nm. The solid lines are the masses of CO$_2$ and HOC$_6$H$_5$CHCH resulting from two-body DPD, and the dashed lines are the reported masses of CO$_2$ and HOC$_6$H$_5$ produced via charge-symmetric three-body photodissociation. The peak at 81 a.m.u. is a result of false coincidences between two stable HOC$_6$H$_4$CHCHCO$_2$ radicals.

Figure S4 is the fragment mass spectrum of the products of p-CA$^-$ at 266 nm (4.66 eV), where two neutrals are recorded in coincidence. The mass spectrum for p-CA$^-$ is significantly wider than the mass spectrum recorded for benzoate. This may be indicative of the presence of another channel. One possibility are the three-body photodissociation channels, where both HOC$_6$H$_5$ + HCC$^-$ + CO$_2$ or HOC$_6$H$_4^-$ + HCCH + CO$_2$ are calculated to be energetically accessible as shown in Table 1 in the manuscript. In the current apparatus configuration, a two-photon process of three-body photodissociation and subsequent photodetachment is required to collect all three neutral fragments and a photoelectron. Therefore at the low laser powers used in the study the most likely products of three-body photodissociation are two neutral fragments and an undetected anionic fragment. For a
concerted, charge symmetric, three-body photodissociation channel resulting in equal mass neutral fragments, the fragment mass spectrum and the KER spectrum for the three-body dissociation can be extracted from the two-body data. For a concerted, three-body mass-asymmetric photodissociation resulting in HOC₆H₅ + HCC⁻ + CO₂, it would be expected that the CO₂ would appear as mass $44 \times \frac{163}{94 + 44} = 52$ a.m.u. and OHC₆H₅ at mass $94 \times \frac{163}{94 + 44} = 111$ a.m.u. in the fragment mass spectrum. The mass spectrum in Figure S4 does indeed peak near 52 and 111 a.m.u. providing evidence for the presence of this channel. However, this is a crude approximation as the neutral fragments are different in mass, such that the undetected HCC⁻ would recoil significantly from the center-of-mass upon dissociation. It is likely this accounts for the observed broadening of the mass spectrum. No attempt is made to extract a KER spectrum for the three-body photodissociation, as the recoiling anion leaves a portion of the KER unaccounted for. Similar arguments cannot be made to predict the observed masses of HCCH + CO₂ produced via three-body photodissociation, where HOC₆H₄⁻ is undetected, as in this case the anionic fragment is a terminal fragment in the molecular framework.