## Supporting information: Generating large out-of-plane piezoelectric properties of atomically thin MoS<sub>2</sub> via the defect engineering

Li-Ren Ng<sup>1</sup>, Guan-Fu Chen<sup>1</sup>, and Shi-Hsin Lin<sup>1\*</sup>

<sup>1</sup>Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan

E-mail: albert@mail.nsysu.edu.tw

## Sulfur vacancy distribution of the asymmetrically defected $MoS_2$

We investigated the elastic and piezoelectric properties of the asymmetrically defected  $MoS_2$  via defect engineering. The defect configurations in different concentrations considered in this work was shown in Fig. S1.

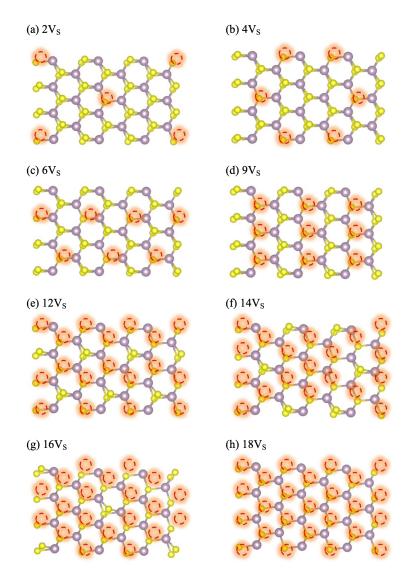



Figure S1: Distribution of S vacancy on the  $3\sqrt{3}a \times 3a$  supercell of the MoS<sub>2</sub> monolayer for various defect concentrations. Mo, and S were represented with purple, and yellow spheres respectively, and the S defects were depicted as circles with red dash lines.

## Relative in-plane sulfur vacancy positions in the multilayer ${\rm MoS}_2$

We considered the relative in-plane sulfur vacancy position in the multilayer  $MoS_2$ , Fig. S2 showed the two relative positions of the top and bottom layer of the AA stacking multilayer surface that were considered in this work, which have coincident and farthest in-plane positions.

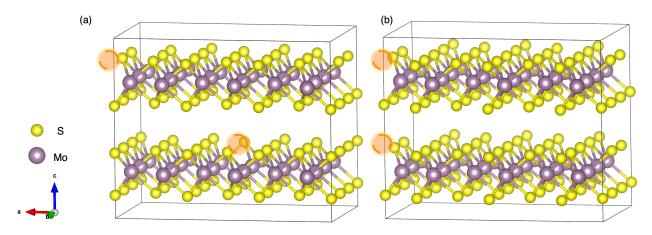



Figure S2: Relative in-plane sulfur vacancy positions in AA-stacking multilayer. (a) AA\*, (b)AA.

## Elastic and piezoelectric coefficients of the AA and AB stacking $MoS_2$ multilayer

In this work, we calculated elastic and piezoelectric coefficients of the multilayer  $MoS_2$  with AA and AB stacking. The results for all considered defect concentration were shown in Table S1 and Table S2 respectively. Both the AA and AB stacking pristine  $MoS_2$  showed no out-of-plane piezoelectric response due to the centrosymmetry. After the defect engineering process to break the centrosymmetry, the out-of-plane piezoelectric response can be induced. The piezoelectric coefficient  $d_{33}$  increases as the number of asymmetrically created defects. The defected  $MoS_2$  would undergo a metal-insulator transition beyond  $MoS_{1.22}$  for AA stacking and  $MoS_{1.33}$  for AB stacking.

Table S1: Calculated relaxed-ion elastic constants (in units of  $10^{10}$  Pa), and piezoelectric coefficients d (in units of pm/V) and e (in units of C/m<sup>2</sup>) for the  $3\sqrt{3}a \times 3a$  rectangular supercell of the AA-stacking MoS<sub>2</sub> multilayer with 0 to 14 V<sub>S</sub> defects, corresponding to MoS<sub>2</sub> and MoS<sub>1.22</sub>.

| defect ratio | $C_{11}$ | $C_{12}$ | $C_{13}$ | $C_{33}$ | $e_{11}$ | $d_{11}$ | $e_{31}$ | $d_{31}$ | $e_{33}$ | $d_{33}$ |
|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $MoS_2$      | 20.51    | 4.74     | 0.63     | 4.59     | 0.48     | 3.01     | 0.00     | 0.00     | 0.00     | 0.00     |
| $MoS_{1.94}$ | 20.15    | 4.62     | 0.45     | 4.52     | 0.56     | 3.60     | 0.02     | 0.07     | 0.02     | 0.41     |
| $MoS_{1.88}$ | 19.95    | 4.73     | 0.66     | 4.49     | 0.57     | 3.77     | 0.04     | 0.14     | 0.04     | 0.83     |
| $MoS_{1.77}$ | 19.28    | 4.79     | 0.68     | 4.15     | 0.63     | 4.33     | 0.09     | 0.31     | 0.07     | 1.66     |
| $MoS_{1.66}$ | 18.59    | 4.99     | 0.72     | 3.81     | 0.71     | 5.21     | 0.12     | 0.46     | 0.09     | 2.30     |
| $MoS_{1.33}$ | 18.93    | 4.35     | 0.50     | 3.14     | 0.89     | 6.12     | 0.15     | 0.46     | 0.28     | 8.60     |
| $MoS_{1.22}$ | 19.25    | 5.04     | 0.87     | 2.48     | 0.88     | 6.17     | 0.23     | 0.33     | 0.43     | 17.00    |

Table S2: Calculated relaxed-ion elastic constants (in units of  $10^{10}$  Pa), and piezoelectric coefficients d (in units of pm/V) and e (in units of C/m<sup>2</sup>) for the  $3\sqrt{3}a \times 3a$  rectangular supercell of the MoS<sub>2</sub> multilayer AB-stacking with 0 to 12 V<sub>S</sub> defects, corresponding to MoS<sub>2</sub> and MoS<sub>1.33</sub>.

| defect ratio | $C_{11}$ | $C_{12}$ | $C_{13}$ | $C_{33}$ | $e_{11}$ | $d_{11}$ | $e_{31}$ | $d_{31}$ | $e_{33}$ | $d_{33}$ |
|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $MoS_2$      | 20.57    | 4.80     | 0.62     | 4.56     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |
| $MoS_{1.94}$ | 20.11    | 4.80     | 0.63     | 4.38     | 0.03     | 0.19     | 0.02     | 0.08     | 0.02     | 0.39     |
| $MoS_{1.88}$ | 19.92    | 4.73     | 0.65     | 4.40     | 0.00     | 0.01     | 0.04     | 0.14     | 0.04     | 0.80     |
| $MoS_{1.77}$ | 19.30    | 4.88     | 0.68     | 4.01     | 0.00     | 0.00     | 0.09     | 0.31     | 0.07     | 1.59     |
| $MoS_{1.66}$ | 18.67    | 5.01     | 0.67     | 3.81     | 0.00     | 0.04     | 0.13     | 0.48     | 0.09     | 2.14     |
| $MoS_{1.33}$ | 18.63    | 4.39     | 0.70     | 2.83     | 0.00     | 0.00     | 0.16     | 0.45     | 0.24     | 8.41     |