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                                                       SI – Preamble 
 

The following chapters SI I, SI II etc. are written in somewhat didactic style, for 

readers who are not familiar with e. g. the phenomenon of pseudo-rotations, 

permutations of equivalent nuclei, the role of nuclear spin isomers, or 

applications of cyclic molecular symmetry groups to quantum mechanically 

unified structures of the oriented tubular rotors. These chapters refer to Figures 

1,2,3 of the main text and to Figures S1, S2 etc. and to Tables S1, S2 etc. which 

are compiled at the beginning of SI.     
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Figure S3: a Vibrational frequencies and irreducible representations (IRREPs) 

of the vibrational normal modes of eighteen equivalent global minimum 

structures (GMs) and transition states (TSs) of La-[B2@B18]-La. b Vector arrow 

plots of two selected normal modes of three GMs and TSs. They are directed 

approximately along the rotational/pseudo-rotational paths of all nuclei. c 

Superposition of all vector arrow plots of the two selected normal modes of all 

GMs and all TSs. 

 

Figure S4: Five perspective views of (a) the superposition of 18 GMs and 18 

TSs and (b) the unified quantum mechanical structure with 18 interacting GMs 

of the oriented La-[B2@B18]-La. 

 

Figure S5: Eigenenergies and eigenfunctions of selected rotational/pseudo-

rotational eigenstates of the oriented tubular molecular rotor La-[B2@B18]-La. 

 

Figure S6: The cyclic sequences of the reference coordinates of the nucleus of 

the bearing at the reference angle Φ1 = 10°, versus the azimuthal angle of the 

molecular wheel of the oriented model La-[B2@B18]-La, together with the 

pseudo-rotational paths which pass through these sequences. 

  

Figure S7: a Cyclic sequence of the Cartesian coordinates Xj, Yj of the nucleus 

of the bearing at the reference angle Φ1 = 10°, with parametric dependence on 

the azimuthal angle of the molecular wheel of the oriented La-[B2@B18]-La, and 

with the pseudo-rotational path which passes through this sequence. b Vector 

arrows attached to the balls shown in panel a, as explained for Figure S3c. The 

vectors at the TSs correlate well with the motions along the pseudo-rotational 

path.  

 

Table S1: Permutations of the boron nuclei of the tubular bearing and of the 

molecular wheel of the reference global minimum structure GM1 for the 

generation of the other GM2, …, GM18 of the tubular rotor La-[B2@B18]-La. 

 

Table S2: a Coordinates of the boron nuclei of the tubular bearing of the 

reference global minimum structure GM1 and the transition state TS18,1 of the 

oriented rotor La-[B2@B18]-La. b Coordinates of all (=18) boron nuclei of the 

tubular bearing of all (=18) global minimum structures and transitions states of 

the oriented rotor La-[B2@B18]-La. 
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Table S3: Rotational/pseudo-rotational energies and irreducible representations 

of the cyclic molecular symmetry group C18(M) of the 54 lowest eigenstates of 

the oriented tubular rotor La-[B2@B18]-La. 

 

SI I: The generation of all global minimum structures of the oriented tubular 

rotor La-[B2@B18]-La 

 

SI II: The generation of all transition states of the oriented tubular rotor La-

[B2@B18]-La 

 

SI III: The cyclic molecular symmetry group C18(M) of the oriented tubular rotor 

La-[B2@B18]-La 

 

SI IV: Solution of the Schrödinger equation for the model of the rotating 

molecular wheel in the pseudo-rotating bearing of the oriented tubular rotor La-

[B2@B18]-La 

 

SI V: The effective moment of inertia of the rotation of the molecular wheel in 

the pseudo-rotating tubular bearing of the oriented rotor La-[B2@B18]-La  

 

SI VI: The nuclear coordinates of 18 equivalent global minimum structures and 

18 transition states of the oriented tubular rotor La-[B2@B18]-La 

 

SI VII: The rotating molecular wheel in the pseudo-rotating tubular bearing of 

the oriented rotor La-[B2@B18]-La 

 

SI VIII: Rotational and pseudo-rotational paths of the nuclei of the oriented 

tubular rotor La-[B2@B18]-La 

 

SI IX: Support of the model of the rotating molecular wheel in the pseudo-

rotating tubular bearing by vector arrow plots of two selected normal modes of 

La-[B2@B18]-La 
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Figure S1: Rainbow-colour-coded perspective views of eighteen equivalent 

global minimum structures GM1, GM2, …, GM18 of the oriented model tubular 

molecular rotor La-[B2@B18]-La. Nuclei in front and in the back are illustrated 

by large and small balls, respectively. The z-axis with the two La nuclei (grey 

balls, the one in front hides the one in the back) points to the viewer. Results 

calculated at the PBE0 level of quantum chemistry, cf. SI VI-A.  
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Figure S2: Rainbow-colour-coded perspective views of eighteen equivalent 

transition states TS18,1, TS1,2, …, TS17,18 of the oriented model tubular molecular 

rotor La-[B2@B18]-La. The notations are as in Figure S1. Results calculated at 

the PBE0 level of quantum chemistry, cf. SI VI-A.  
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Figure S3: a Vibrational frequencies and irreducible representations (IRREPs) 

of the vibrational normal modes of eighteen equivalent global minimum 

structures (GM, cf. Figure S1) and transition states (TS, cf. Figure S2) of La-

[B2@B18]-La. The molecular point group is C2h for GM, and also for TS. The 

horizontal arrows point to the second lowest bg mode (234.79 c cm-1) of GM and 

to the bg mode with imaginary frequency (217.84i c cm-1) of TS. b Perspective 

views in opposite z-direction of the rainbow-colour-coded vector arrow plots of 

the two selected bg modes of three GMs (filled circles) and TSs (open circles). 

Large circles are in front (Z > 0), small circles are in the back (Z < 0). The arrows 

are directed approximately along the rotational/pseudo-rotational paths of the 

nuclei. c Superposition of all (18+18) rainbow-colour-coded vector arrow plots 

of the two selected bg modes of all GMs and TSs. Results calculated at the PBE0 

level of quantum chemistry, cf. SI VI-A. 

 

 

 

 
 

 

a 



7 
 

 
 

 
 

 

 

 

b 

c 



8 
 

Figure S4: Five perspective views of (a) the superposition of 18 rainbow-color-

coded global minimum structures (GMs, full balls) and transitions states (TSs, 

open balls) and (b) the unified quantum mechanical structure with 18 interacting 

GMs of the oriented La-[B2@B18]-La. The zig-zag-lines guide the eye along the 

staggered sequence of the eighteen nuclei of the tubular bearing of the rotor. The 

18 loops illustrate the pseudo-rotational paths of the 18 nuclei of the bearing. The 

insert shows a magnification of one of these pseudo-rotational paths. The two 

metal nuclei on the z-axis are illustrated by grey balls. In (a), the straight dashed 

lines from the metal nuclei to the two boron nuclei of the molecular wheel of the 

rotor illustrate 18 La-B2-La rhombi of the 18 GMs. The rotational paths of the 

two nuclei of the wheel are illustrated by circles. In (b), the dashed lines illustrate 

the 18-cornered double cone of the unified structure. 
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Figure S5: Eigenenergies Em (m=0,17,18,35,36,53) and eigenfunctions Ψm 

(m=0,18,36,53) of selected rotational/pseudo-rotational eigenstates of the 

oriented tubular molecular rotor La-[B2@B18]-La. The levels serve as base lines 

for the eigenfunctions. They are embedded in the model potential V versus angle 

φ which specifies the rotation of the molecular wheel (B2) in the pseudo-rotating 

tubular bearing (B18), compare with Figure 3. All energies E0 – E53 are below the 

potential barrier. The energy levels Em=0 and Em=17 as well as Em=18 and Em=35 

appear superimposed, but this is a consequence of the low graphical resolution; 

their accurate values are non-degenerate, as listed in Table S3. The densities ρm 

= |Ψm|2 look the same in each of the eighteen equivalent potential wells – this 

means that the eighteen equivalent global minimum structures (GMs) of La-

[B2@B18]-La are populated with the same probability.    
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Figure S6: The cyclic sequences a of the cylindrical reference radial coordinate 

Rj, b the deviation angle -ΔΦj, and c the Cartesian coordinates Xj, Yj, |Zj| of the 

nucleus of the bearing at the reference angle Φ1 = 10°, versus the azimuthal angle 

of the molecular wheel of the model La-[B2@B18]-La back-rotated by Φ1 = 10°, 

that means versus ϕj = φj – Φ1, j=1, 2, …,36, 37≡1. Alternating filled and open 

circles refer to global minimum structures and transition states, respectively, 

from GM1 (ϕ1=0°, j=1) via TS1,2 (ϕ2=10°, j=2), GM2 (ϕ3=20°, j=3), ... , GM18 

(ϕ35=340°, j=34), TS18,1 (ϕ36=350°, j=36°) back to GM1 (ϕ1 = 360° ≡ 0°, j = 37 ≡ 

1), cf. Section SI VII. The pseudo-rotational paths which pass through these 

sequences are calculated by means of least square fits of symmetry-adapted 

Fourier series, cf. Section SI VIII. 

 

 

 

 

c 

b 

a 
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Figure S7: a Two-dimensional (2d) projection of the cyclic sequence of the 

Cartesian reference coordinates Xj, Yj, |Zj|  of the nucleus of the bearing at the 

reference angle Φ1 = 10° , with parametric dependence on the azimuthal angle of 

the molecular wheel of the model La-[B2@B18]-La back-rotated by Φ1, that 

means depending on ϕj = φj – Φ1, j = 1, 2, …,35, 36. Alternating filled and open 

circles indicate alternating global minimum structures (GMs) and transition 

states (TSs), as in Figure S4. The smooth pseudo-rotational paths which pass 

through these sequences are calculated by means of least square fits of 

symmetry-adapted Fourier series, cf. Chapter SI VIII. b Vector arrows attached 

to the balls shown in panel a. The vectors are generated from the selected bg 

normal modes of the GMs and TSs, as explained for Figure S3c. The vectors at 

the TSs correlate well with the motions along the pseudo-rotational path.  
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Table S1: Permutations of the cyclic molecular symmetry group C18(M) for the 

boron nuclei of the tubular bearing (1-18) and of the molecular wheel (19, 20) of 

the reference global minimum structure GM1 for the generation of the other 

GM2, …, GM18 of the oriented molecular rotor La-[B2@B18]-La.* 

 

Pk          gp
k         permutation 

 

P1          gp               (1 9 17 7 15 5 13 3 11) (2 10 18 8 16 6 14 4 12) (19 20) 

P2               gp
2         (1 17 15 13 11 9 7 5 3) (2 18 16 14 12 10 8 6 4) 

P3          gp
3           (1 7 13) (3 9 15) (5 11 17) (2 8 14) (4 10 16) (6 12 18) (19 20) 

P4           gp
4          (1 15 11 7 3 17 13 9 5) (2 16 12 8 4 18 14 10 6) 

P5          gp
5              (1 5 9 13 17 3 7 11 15) (2 6 10 14 18 4 8 12 16) (19 20) 

P6          gp
6          (1 13 7) (3 15 9) (5 17 11) (2 14 8) (4 16 10) (6 18 12) 

P7          gp
7          (1 3 5 7 9 11 13 15 17) (2 4 6 8 10 12 14 16 18) (19 20) 

P8                gp
8           (1 11 3 13 5 15 7 17 9) (2 12 4 14 6 16 8 18 10) 

P9                gp
9          (19 20)           

P10         gp
10

           (1 9 17 7 15 5 13 3 11) (2 10 18 8 16 6 14 4 12)  

P11              gp
11       (1 17 15 13 11 9 7 5 3) (2 18 16 14 12 10 8 6 4) (19 20) 

P12         gp
12         (1 7 13) (3 9 15) (5 11 17) (2 8 14) (4 10 16) (6 12 18)  

P13          gp
13         (1 15 11 7 3 17 13 9 5) (2 16 12 8 4 18 14 10 6) (19 20) 

P14         gp
14             (1 5 9 13 17 3 7 11 15) (2 6 10 14 18 4 8 12 16)  

P15         gp
15        (1 13 7) (3 15 9) (5 17 11) (2 14 8) (4 16 10) (6 18 12) (19 20) 

P16         gp
16         (1 3 5 7 9 11 13 15 17) (2 4 6 8 10 12 14 16 18)  

P17             gp
17           (1 11 3 13 5 15 7 17 9) (2 12 4 14 6 16 8 18 10) (19 20) 

P18(=E)  gp
18(=e)   (1) 

 

 gp denotes the generator of the permutations. E(e) denote the identity. 

For the details, see SI III. 

 

 

 

 

Table S2: a Cylindrical coordinates of the boron nuclei of the tubular bearing of 

the reference global minimum structure GM1 and the transition state TS18,1 of the 

oriented rotor La-[B2@B18]-La.a b Coordinates of all (=18) boron nuclei of the 

tubular bearing of all (=18) global minimum structures and transitions states of 

the oriented rotor La-[B2@B18]-La.b Results calculated at the PBE0 level of 

quantum chemistry, cf. SI VI-A. 
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i Φi[°]   j ϕj[°]     Rj=Ri
TS, Ri

GM [Å] ΔΦj=ΔΦi
TS, ΔΦi

GM [°] Zj=Zi
TS, Zi

GM [Å] 

              

1 10 0 0 2.3266 -1.0524 -0.8495 

1 10 1 10 2.3187 0 0.8718 

2 30 2 20 2.3266 1.0555 0.8497 

2 30 3 30 2.3019 0.7724 -0.8245 

3 50 4 40 2.2566 0.5481 -0.8029 

3 50 5 50 2.2524 1.3204 0.7749 

4 70 6 60 2.2425 1.9501 0.7557 

4 70 7 70 2.2601 1.822 -0.7892 

5 90 8 80 2.4530 1.1927 -0.7992 

5 90 9 90 2.6155 0.5031 0.7202 

6 110 10 100 2.6476 0.0012 0.6743 

6 110 11 110 2.6155 -0.5031 -0.7202 

7 130 12 120 2.4530 -1.1887 -0.7993 

7 130 13 130 2.2601 -1.822 0.7892 

8 150 14 140 2.2426 -1.9456 0.7557 

8 150 15 150 2.2524 -1.3204 -0.7749 

9 170 16 160 2.2565 -0.5429 -0.803 

9 170 17 170 2.3019 -0.7724 0.8245 

10 190 18 180 2.3266 -1.0524 0.8495 

10 190 19 190 2.3187 0 -0.8718 

11 210 20 200 2.3266 1.0555 -0.8497 

11 210 21 210 2.3019 0.7724 0.8245 

12 230 22 220 2.2566 0.5481 0.8029 

12 230 23 230 2.2524 1.3204 -0.7749 

13 250 24 240 2.2425 1.9501 -0.7557 

13 250 25 250 2.2601 1.822 0.7892 

14 270 26 260 2.4530 1.1927 0.7992 

14 270 27 270 2.6155 0.5031 -0.7202 

15 290 28 280 2.6476 0.0012 -0.6743 

15 290 29 290 2.6155 -0.5031 0.7202 

16 310 30 300 2.4530 -1.1887 0.7993 

16 310 31 310 2.2601 -1.8220 -0.7892 

17 330 32 320 2.2426 -1.9456 -0.7557 

17 330 33 330 2.2524 -1.3204 0.7749 

18 360 34 340 2.2565 -0.5429 0.803 

18 360 35 350 2.3019 -0.7724 -0.8245 

1 10 36 360 2.3266 -1.0524 -0.8495 

 

 

 

a 
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TS / GM k ϕk,k+1[°]     i=1 2 3 4 5 6 

     ϕk[°]     Φi[°]=10 30 50 70 90 110 

TS18,1 18 0 1@T1,1 2@T2,2 3@T3,3 4@T4,4 5@T5,5 6@T6,6 

GM1 1 10 1@G1,1 2@G2,2 3@G3,3 4@G4,4 5@G5,5 6@G6,6 

TS1,2 1 20 9@T18,1  10@T1,2 11@T2,3 12@T3,4 13@T4,5 14@T5,6 

GM2 2 30 9@G18,1 10@G1,2 11@G2,3 12@G3,4 13@G4,5 14@G5,6 

TS2,3 2 40 17@T17,1  18@T18,2 1@T1,3 2@T2,4 3@T3,5 4@T4,6 

GM3 3 50 17@G17,1  18@G18,2 1@G1,3 2@G2,4 3@G3,5 4@G4,6 

TS3,4 3 60 7@T16,1  8@T17,2 9@T18,3 10@T1,4 11@T2,5 12@T3,6 

GM4 4 70 7@G16,1  8@G17,2 9@G18,3 10@G1,4 11@G2,5 12@G3,6 

TS4,5 4 80 15@T15,1  16@T16,2 17@T17,3 18@T18,4 1@T1,5 2@T2,6 

GM5 5 90 15@G15,1  16@G16,2 17@G17,3 18@G18,4 1@G1,5 2@G2,6 

TS5,6 5 100 5@T14,1  6@T15,2 7@T16,3 8@T17,4 9@T18,5 10@T1,6 

GM6 6 110 5@G14,1  6@G15,2 7@G16,3 8@G17,4 9@G18,5 10@G1,6 

TS6,7 6 120 13@T13,1  14@T14,2 15@T15,3 16@T16,4 17@T17,5 18@T18,6 

GM7 7 130 13@G13,1  14@G14,2 15@G15,3 16@G16,4 17@G17,5 18@G18,6 

TS7,8 7 140 3@T12,1  4@T13,2 5@T14,3 6@T15,4 7@T16,5 8@T17,6 

GM8 8 150 3@G12,1  4@G13,2 5@G14,3 6@G15,4 7@G16,5 8@G17,6 

TS8,9 8 160 11@T11,1  12@T12,2 13@T13,3 14@T14,4 15@T15,5 16@T16,6 

GM9 9 170 11@G11,1  12@G12,2 13@G13,3 14@G14,4 15@G15,5 16@G16,6 

TS9,10 9 180 1@T10,1  2@T11,2 3@T12,3 4@T13,4 5@T14,5 6@T15,6 

GM10 10 190 1@G10,1 2@G11,2 3@G12,3 4@G13,4 5@G14,5 6@G15,6 

TS10,11 10 200 9@T9,1  10@T10,2 11@T11,3 12@T12,4 13@T13,5 14@T14,6 

GM11 11 210 9@G9,1  10@G10,2 11@G11,3 12@G12,4 13@G13,5 14@G14,6 

TS11,12 11 220 17@T8,1  18@T9,2 1@T10,3 2@T11,4 3@T12,5 4@T13,6 

GM12 12 230 17@G8,1  18@G9,2 1@G10,3 2@G11,4 3@G12,5 4@G13,6 

TS12,13 12 240 7@T7,1  8@T8,2 9@T9,3 10@T10,4 11@T11,5 12@T12,6 

GM13 13 250 7@G7,1  8@G8,2 9@G9,3 10@G10,4 11@G11,5 12@G12,6 

TS13,14 13 260 15@T6,1  16@T7,2 17@T8,3 18@T9,4 1@T10,5 2@T11,6 

GM14 14 270 15@G6,1  16@G7,2 17@G8,3 18@G9,4 1@G10,5 2@G11,6 

TS14,15 14 280 5@T5,1  6@T6,2 7@T7,3 8@T8,4 9@T9,5 10@T10,6 

GM15 15 290 5@G5,1  6@G6,2 7@G7,3 8@G8,4 9@G9,5 10@G10,6 

TS15,16 15 300 13@T4,1  14@T5,2 15@T6,3 16@T7,4 17@T8,5 18@T9,6 

GM16 16 310 13@G4,1  14@G5,2 15@G6,3 16@G7,4 17@G8,5 18@G9,6 

TS16,17 16 320 3@T3,1  4@T4,2 5@T5,3 6@T6,4 7@T7,5 8@T8,6 

GM17 17 330 3@G3,1  4@G4,2 5@G5,3 6@G6,4 7@G7,5 8@G8,6 

TS17,18 17 340 11@T2,1  12@T3,2 13@T4,3 14@T5,4 15@T6,5 16@T7,6 

GM18 18 350 11@G2,1  12@G3,2 13@G4,3 14@G5,4 15@G6,5 16@G7,6 

TS18,1 18 360 1@T1,1 2@T2,2 3@T3,3 4@T4,4 5@T5,5 6@T6,6 

 

b 
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TS / GM k ϕk,k+1[°]     i=7 8 9 10 11 12 

     ϕk[°]     Φi[°]=130 150 170 190 210 230 

TS18,1 18 0 7@T7,7 8@T8,8 9@T9,9 10@T10,10 11@T11,11 12@T12,12 

GM1 1 10 7@G7,7 8@G8,8 9@G9,9 10@G10,10 11@G11,11 12@G12,12 

TS1,2 1 20 15@T6,7 16@T7,8 17@T8,9 18@T9,10 1@T10,11 2@T11,12 

GM2 2 30 15@G6,7 16@G7,8 17@G8,9 18@G9,10 1@G10,11 2@G11,12 

TS2,3 2 40 5@T5,7 6@T6,8 7@T7,9 8@T8,10 9@T9,11 10@T10,12 

GM3 3 50 5@G5,7 6@G6,8 7@G7,9 8@G8,10 9@G9,11 10@G10,12 

TS3,4 3 60 13@T4,7 14@T5,8 15@T6,9 16@T7,10 17@T8,11 18@T9,12 

GM4 4 70 13@G4,7 14@G5,8 15@G6,9 16@G7,10 17@G8,11 18@G9,12 

TS4,5 4 80 3@T3,7 4@T4,8 5@T5,9 6@T6,10 7@T7,11 8@T8,12 

GM5 5 90 3@GT3,7 4@G4,8 5@G5,9 6@G6,10 7@G7,11 8@G8,12 

TS5,6 5 100 11@T2,7 12@T3,8 13@T4,9 14@T5,10 15@T6,11 16@T7,12 

GM6 6 110 11@G2,7 12@G3,8 13@G4,9 14@G5,10 15@G6,11 16@G7,12 

TS6,7 6 120 1@T1,7 2@T2,8 3@T3,9 4@T4,10 5@T5,11 6@T6,12 

GM7 7 130 1@G1,7 2@G2,8 3@G3,9 4@G4,10 5@G5,11 6@G6,12 

TS7,8 7 140 9@T18,7 10@T1,8 11@T2,9 12@T3,10 13@T4,11 14@T5,12 

GM8 8 150 9@G18,7 10@G1,8 11@G2,9 12@G3,10 13@G4,11 14@G5,12 

TS8,9 8 160 17@T17,7 18@T18,8 1@T1,9 2@T2,10 3@T3,11 4@T4,12 

GM9 9 170 17@G17,7 18@G18,8 1@G1,9 2@G2,10 3@G3,11 4@G4,12 

TS9,10 9 180 7@T16,7 8@T17,8 9@T18,9 10@T1,10 11@T2,11 12@T3,12 

GM10 10 190 7@G16,7 8@G17,8 9@G18,9 10@G1,10 11@G2,11 12@G3,12 

TS10,11 10 200 15@T15,7 16@T16,8 17@T17,9 18@T18,10 1@T1,11 2@T2,12 

GM11 11 210 15@G15,7 16@G16,8 17@G17,9 18@G18,10 1@G1,11 2@G2,12 

TS11,12 11 220 5@T14,7 6@T15,8 7@T16,9 8@T17,10 9@T18,11 10@T1,12 

GM12 12 230 5@G14,7 6@G15,8 7@G16,9 8@G17,10 9@G18,11 10@G1,12 

TS12,13 12 240 13@T13,7 14@T14,8 15@T15,9 16@T16,10 17@T17,11 18@T18,12 

GM13 13 250 13@G13,7 14@G14,8 15@G15,9 16@G16,10 17@G17,11 18@G18,12 

TS13,14 13 260 3@T12,7 4@T13,8 5@T14,9 6@T15,10 7@T16,11 8@T17,12 

GM14 14 270 3@G12,7 4@G13,8 5@G14,9 6@G15,10 7@G16,11 8@G17,12 

TS14,15 14 280 11@T11,7 12@T12,8 13@T13,9 14@T14,10 15@T15,11 16@T16,12 

GM15 15 290 11@G11,7 12@G12,8 13@G13,9 14@G14,10 15@G15,11 16@G16,12 

TS15,16 15 300 1@T10,7 2@T11,8 3@T12,9 4@T13,10 5@T14,11 6@T15,12 

GM16 16 310 1@G10,7 2@G11,8 3@G12,9 4@G13,10 5@G14,11 6@G15,12 

TS16,17 16 320 9@T9,7 10@T10,8 11@T11,9 12@T12,10 13@T13,11 14@T14,12 

GM17 17 330 9@G9,7 10@G10,8 11@G11,9 12@G12,10 13@G13,11 14@G14,12 

TS17,18 17 340 17@T8,7 18@T9,8 1@T10,9 2@T11,10 3@T12,11 4@T13,12 

GM18 18 350 17@G8,7 18@G9,8 1@G10,9 2@G11,10 3@G12,11 4@G13,12 

TS18,1 18 360 7@T7,7 8@T8,8 9@T9,9 10@T10,10 11@T11,11 12@T12,12 
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TS / GM k ϕk,k+1[°]     i=13 14 15 16 17 18 

     ϕk[°]     Φi[°]=250 270 290 310 330 350 

TS18,1 18 0 13@T13,13 14@T14,14 15@T15,15 16@T16,16 17@T17,17 18@T18,18 

GM1 1 10 13@G13,13 14@G14,14 15@G15,15 16@G16,16 17@G17,17 18@G18,18 

TS1,2 1 20 3@T12,13 4@T13,14 5@T14,15 6@T15,16 7@T16,17 8@T17,18 

GM2 2 30 3@G12,13 4@G13,14 5@G14,15 6@G15,16 7@G16,17 8@G17,18 

TS2,3 2 40 11@T11,13 12@T12,14 13@T13,15 14@T14,16 15@T15,17 16@T16,18 

GM3 3 50 11@G11,13 12@G12,14 13@G13,15 14@G14,16 15@G15,17 16@G16,18 

TS3,4 3 60 1@T10,13 2@T11,14 3@T12,15 4@T13,16 5@T14,17 6@T15,18 

GM4 4 70 1@G10,13 2@G11,14 3@G12,15 4@G13,16 5@G14,17 6@G15,18 

TS4,5 4 80 9@T9,13 10@T10,14 11@T11,15 12@T12,16 13@T13,17 14@T14,18 

GM5 5 90 9@G9,13 10@G10,14 11@G11,15 12@G12,16 13@G13,17 14@G14,18 

TS5,6 5 100 17@T8,13 18@T9,14 1@T10,15 2@T11,16 3@T12,17 4@T13,18 

GM6 6 110 17@G8,13 18@G9,14 1@G10,15 2@G11,16 3@G12,17 4@G13,18 

TS6,7 6 120 7@T7,13 8@T8,14 9@T9,15 10@T10,16 11@T11,17 12@T12,18 

GM7 7 130 7@G7,13 8@G8,14 9@G9,15 10@G10,16 11@G11,17 12@G12,18 

TS7,8 7 140 15@T6,13 16@T7,14 17@T8,15 18@T9,16 1@T10,17 2@T11,18 

GM8 8 150 15@G6,13 16@G7,14 17@G8,15 18@G9,16 1@G10,17 2@G11,18 

TS8,9 8 160 5@T5,13 6@T6,14 7@T7,15 8@T8,16 9@T9,17 10qT10,18 

GM9 9 170 5@G5,13 6@G6,14 7@G7,15 8@G8,16 9@G9,17 10@G10,18 

TS9,10 9 180 13@T4,13 14@T5,14 15@T6,15 16@T7,16 17@T8,17 18@T9,18 

GM10 10 190 13@G4,13 14@G5,14 15@G6,15 16@G7,16 17@G8,17 18@G9,18 

TS10,11 10 200 3@T3,13 4@T4,14 5@T5,15 6@T6,16 7@T7,17 8@T8,18 

GM11 11 210 3@G3,13 4@G4,14 5@G5,15 6@G6,16 7@G7,17 8@G8,18 

TS11,12 11 220 11@T2,13 12@T3,14 13@T4,15 14@T5,16 15@T6,17 16@T7,18 

GM12 12 230 11@G2,13 12@G3,14 13@G4,15 14@G5,16 15@G6,17 16@G7,18 

TS12,13 12 240 1@T1,13 2@T2,14 3@T3,15 4@T4,16 5@T5,17 6@T6,18 

GM13 13 250 1@G1,13 2@G2,14 3@G3,15 4@G4,16 5@G5,17 6@G6,18 

TS13,14 13 260 9@T18,13 10@T1,14 11@T2,15 12@T3,16 13@T4,17 14@T5,18 

GM14 14 270 9@G18,13 10@G1,14 11@G2,15 12@G3,16 13@G4,17 14@G5,18 

TS14,15 14 280 17@T17,13 18@T18,14 1@T1,15 2@T2,16 3@T3,17 4@T4,18 

GM15 15 290 17@G17,13 18@G18,14 1@G1,15 2@G2,16 3@G3,17 4@G4,18 

TS15,16 15 300 7@T16,13 8@T17,14 9@T18,15 10@T1,16 11@T2,17 12@T3,18 

GM16 16 310 7@G16,13 8@G17,14 9@G18,15 10@G1,16 11@G2,17 12@G3,18 

TS16,17 16 320 15@T15,13 16@T16,14 17@T17,15 18@T18,16 1@T1,17 2@T2,18 

GM17 17 330 15@G15,13 16@G16,14 17@G17,15 18@G18,16 1@G1,17 2@G2,18 

TS17,18 17 340 5@T14,13 6@T15,14 7@T16,15 8@T17,16 9@T18,17 10@T1,18 

GM18 18 350 5@G14,13 6@G15,14 7@G16,15 8@G17,16 9@G18,17 10@G1,18 

TS18,1 18 360 13@T13,13 14@T14,14 15@T15,15 16@T16,16 17@T17,17 18@T18,18 
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Footnotes for Table S2: 

 
a The reference angles for the nuclei of the oriented tubular bearing of La-

[B2@B18]-La are at Φ1 = 10°, Φ2 = 30°, Φ3 = 50°, …,  Φ18 = 350°. In the reference 

global minimum structure GM1, these are occupied by boron nuclei labeled i = 

1, 2, 3, …, 18, respectively. The cylindrical coordinates of nucleus i in GM1 at 

Φi are  (Ri
GM, Φi + ΔΦi

GM, Zi
GM). The cylindrical coordinates of nucleus i in the 

reference transition state TS18,1 at Φi are (Ri
RS, Φi + ΔΦi

TS, Zi
TS). For each label i, 

the entry for TS is on top of the entry for GM. The double sets of labels i can be 

mapped on labels j = 0, 1, 2, …, 36 with azimuthal angle φj, cf. Section SI VI. 

 
b The short hand notation ik@G19-k+i,i specifies the coordinates of the boron 

nucleus ik of the tubular bearing of the global minimum structure GMk of the 

oriented tubular rotor La-[B2@B18]-La at reference angle Φi, cf. eqn. (39) in SI 

VII and Table S2a. Likewise, the short hand notation ik@T18-k+i,i specifies the 

coordinates of the boron nucleus ik of the tubular bearing of the transition state 

TSk,k+1 of the oriented tubular rotor La-[B2@B18]-La at reference angle Φi, cf. 

eqn. (42) in SI VII and Table S2a. The nucleus i of the references GM1 or TS18,1 

at Φi is replaced by ik in GMk or TSk,k+1 by the permutation Pk-1 as listed in Table 

S1.    

 

 

 

Table S3: Rotational/pseudo-rotational energies Em = Enl and irreducible 

representations of the cyclic molecular symmetry group C18(M) of the 54 lowest 

eigenstates of the oriented tubular rotor La-[B2@B18]-La* 
 

*All levels (in units of hc·cm-1) are below the potential barrier, Vb =599.27 hc·cm-1. The 

quantum numbers m=ln specify the energy bands l=0,1,2 and the irreducible representations 

Γn of the cyclic molecular symmetry group C18(M). 



19 
 

SI I: The generation of all global minimum structures of the oriented 

tubular rotor La-[B2@B18]-La 

 

Starting from the reference GM1 of the oriented tubular molecular rotor  

La-[B2@B18]-La, one can generate the cyclic sequence GM2, GM3,…, GM18 of 

all global minimum structures by sequential applications of a “generator” g 

which comprises three operations, g = {gr, ga, gp} where gr is a specific rotation 

of the molecular wheel in the bearing, ga is the adjustment, or relaxation of the 

bearing to the new orientation of the rotated wheel, and gp is a specific 

permutation of the labels of the boron nuclei. The first, second, …, seventeenth 

applications of g transform GM1 into GM2, then GM2 into GM3, …, GM17 into 

GM18, respectively. If one adds another (= the eighteenth) application of g, then 

it transforms GM18 in a cyclic manner back to GM1. One can also say that 1,2, …, 

17, 18 applications of g, that means g, g2, …, g17 and e= g18 (the identity) 

transform GM1 into GM2, GM3,…,GM18, GM1, symbolically 

      

      g         :  GM1    GM2, GM2   GM3, …, GM17   GM18, GM18   GM1 

      gk            :  GM1    GMk+1 for k=1,2,… 17.                                              (1)  

      e = g18 :  GM1    GM1 

 

The reference GM1 and the resulting GM2, …, GM18 are illustrated in Figure S1. 

 

Let us now specify the operations of the generator g = {gr, ga, gp}, starting with 

the rotation gr of the wheel in the bearing of the tubular molecular rotor La-

[B2@B18]-La. Since the goal is to generate eighteen equivalent GMs, gr rotates 

the wheel by 360°/18 = 20°, symbolically 

 

       gr            : φ    φ + 20° mod 360° 

       gr
k               :  φ    φ + k*20° mod 360°                                                   (2) 

       er  = gr
18 : φ    φ 

 

The azimuthal angle of the reference GM1 is set to φ1 = 10°. As consequence, the 

azimuthal angles φ2, …, φ18 of the molecular wheel in GM2, …., GM18 are equal 

to 30°, …, 350°.  

 

The rotation of the wheel gr in the bearing of the tubular molecular rotor 

La2[B2@B18] is associated with the adjustment ga of the bearing to the new 

position of the wheel, and with a specific permutation gp of the labels of the boron 

nuclei. For didactic purposes, this will be explained by two examples. Let us first 

consider a rather simple case, namely application of g2 on GM1 in order to 

generate GM3, cf. Figure 1. For reference, let us recall that GM1 has C2h 
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symmetry, and the two nuclei of the wheel labeled n = 19 and 20 and their nearest 

neighbors in the bearing – these are the nuclei 1 and 10 in the boron rings above 

and below the x-y-plane, respectively – are in the C2h symmetry plane. Double 

application of g means that the wheel is rotated from φ1 = 10° by 2*20° = 40° to 

φ3 = 50°, eq. (2). If the rotation gr
2 would be carried out in the rigid bearing 

without any nuclear relaxations and permutations, then the nuclei 19 and 20 

would end up pointing towards the nuclei 3 and 12 of the bearing of GM1, 

respectively, cf. Figure 1. The rotated nuclei 19, 20 and the non-rotated nuclei 3, 

12, however, would no longer be in the symmetry plane – the C2h symmetry of 

GM1 would be broken. Clearly, the resulting overall shape of the rotor La-

[B2@B18]-La would differ from GM1 – it could no longer be a global minimum 

structure. To restore the global minimum structure, the bearing must adjust, or 

relax to the new position of the wheel. This adjustment ga
2 has to restore in 

particular the C2h symmetry with the nuclei 19, 20 of the wheel and two opposite 

nuclei of the bearing in the symmetry plane. This necessary condition requires 

that the adaption ga
2 is equivalent to (but it is not the same as!) a hypothetical 

rotation of the bearing with respect to the wheel, by the same azimuthal angle as 

the wheel, i. e. by 40°. This rotation would replace the original nuclear labels 3, 

12 of GM1 by 1, 10 in GM3 so that the four nuclei 1,10,19,20 are back to the C2h 

symmetry plane of GM3. In fact, the combined rotations of the wheel and the 

bearing, both by the same angle 2*20°, would correspond to the overall rotation 

of GM1 by 2*20°. The resulting GM3 then looks like GM1 rotated by 40°, hence 

GM3 is a global minimum structure like GM1, cf. Figure 1. 

 

After the discussion of the rotation gr
2 of the wheel in the bearing and the 

adjustment ga
2 of the bearing to the new position of the wheel, let us now address 

the associated permutation gp
2 of the nuclear labels. For this purpose, we note 

that the order of the nuclei in the bearing is robust. As consequence, the 

replacement of the labels of the nuclei 3,12 in GM1 by 1,10 in GM3 implies the 

automatic replacement of all nuclear labels (1,2,3,4, …., 12, ...,17,18) in the 

tubular bearing of GM1 by (17,18,1,2, …,10, …, 15,16) in GM3, cf. Figure 1. 

Hence 

 

gp
2 = (1 17 15 13 11 9 7 5 3) (2 18 16 14 12 10 8 6 4).                                     (3) 

 

This cyclic notation of the permutation should be read as “the nuclear label 1 is 

replaced by 17, label 17 by 15,…, nuclear label 5 by 3, label 3 by 1 (sic !), nucleus 

2 by 18,…, nucleus 12 by 10 (sic !),…, nucleus 4 by 2”. These replacements are 

verified by comparison of the nuclear labels in GM1 and GM3, see Figure 1. The 

cyclic notation in eqn. (3) shows that the odd-valued nuclear labels are 

permutated among each other, well separated from equivalent permutations of 
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the even-valued nuclear labels. This is a consequence of the robustness of the 

cyclic order of the boron nuclei in the two staggered, or interstitial rings of the 

tubular bearing – the exchange of any two boron nuclei with odd and even labels 

would imply the exchange of atoms in the rings above and below the x-y-plane, 

but this is unfeasible at low energies.   

 

As second and slightly more demanding example, let us consider the application 

of g on GM1, to generate GM2 of the tubular molecular rotor La-[B2@B18]-La, 

cf. Figure 1. Here gr rotates the molecular wheel in the bearing by 20°. If this 

rotation would be carried out in an inert bearing without any permutations of the 

nuclear labels, the nuclei 19, 20 of the wheel would point towards the nuclei 

labeled 2 and 11 of the bearing of GM1, cf. Figure 1. As for the first example, 

this structure would differ from the global minimum structure, and again, in order 

to restore it, the bearing has to adjust to the new position of the wheel. On first 

glance, the first example might suggest that this adjustment ga should be 

equivalent to the rotation of the bearing by the same angle as the wheel, i.e. by 

20°. But this could not be successful because it would mean, for example, that 

the nucleus 2 in the reference GM1 where it is below the x-y-plane should be 

replaced by nucleus 1 which is above the x-y-plane. This would call for nuclear 

motion from the boron ring of the tubular bearing below the x-y-plane to the 

other ring above the x-y-plane, but this is unfeasible in the oriented rotor La-

[B2@B18]-La. The restoration of the global minimum structure GM2 can be 

achieved, however, by an adjustment of the bearing which is equivalent to (but 

not the same as) a rotation of the bearing with respect to the wheel by 20° + 180° 

= 200°. Figure 1 shows that now the nucleus 2 of the bearing in GM1 is replaced 

by nucleus 10 in GM2. This is feasible because both nuclei 2 and 10 are in the 

boron ring of the bearing below the x-y-plane. The replacement of nucleus 2 by 

10 implies the automatic replacement of all labels (1,2,3, …,10,11, ….,17,18) of 

the nuclei of the tubular bearing in GM1 by (9,10,11, ….,18,1, ……,8, 9) in GM2, 

cf. Figure 1, due to the robustness of the cyclic order of the nuclei in the tubular 

bearing. Finally, the restoration of the shape of the bearing of GM1 in GM2 must 

also be accompanied by a small albeit absolutely necessary adjustment of the 

wheel, namely nucleus 19 should move from its position just below the x-y-plane 

to the corresponding position just above the x-y-plane, and vice versa for nucleus 

20. This adjustment is equivalent to the exchange of nuclei 19 and 20. Summing 

up, GM2 is generated from the reference GM1 by  

 

the generator g = {gr, ga, gp} where  

 

 gr rotates the molecular wheel in the bearing,  
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          gr : φ  φ + 20°  

 

 ga adjusts the shape of the bearing to the new azimuthal angle of the 

molecular wheel,  

 

 gp permutes the labels of the boron nuclei 

 

           gp = (1 9 17 7 15 5 13 3 11) (2 10 18 8 16 6 14 4 12) (19 20)           (4)  

 

This permutation is mathematically equivalent to some number of permutations 

of pairs of nuclei with odd labels of the upper ring of the tubular bearing, plus 

the same number of permutations of pairs of nuclei with even labels of the lower 

ring, plus 1 for the permutation of the two nuclei of the wheel, hence it is 

equivalent to an odd number of permutations of pairs of boron nuclei. Since the 

boron nuclei are fermions, the total wavefunction of the tubular rotor must be 

anti-symmetric i. e. it must change sign upon each permutation of any pair of 

nuclei. Since gp corresponds to an odd number of such permutations of pairs of 

nuclei, the total wavefunction of the tubular rotor must change sign upon 

application of gp. Since the total wavefunction can be written as product of spatial 

times nuclear spin wavefunctions, we have 

  

     gp Ψtotal = gp Ψspatial  * Ψnu.spin =  gp Ψspatial  * gp Ψnu.spin  

      

     = - Ψtotal = - Ψspatial  * Ψnu.spin.                                                                  (5) 

           

 

As a test, it is gratifying that double application g°g of the generator (g: GM1  

GM2, g: GM2  GM3, cf. eqn. (1)) yields the same result as the first example 

(g2: GM1  GM3). This is obvious for the rotation gr of the wheel in the bearing, 

and also for the adjustment ga of the bearing to the new position of the wheel. 

Likewise, the permutation gp
2 (first example, eqn. (3)) is obtained by double 

application of gp (second example, eqn. (4)): 

 

 

gp
2 = gp .gp = (1 9 17 7 15 5 13 3 11) (2 10 18 8 16 6 14 4 12) (19 20)         

                   . (1 9 17 7 15 5 13 3 11) (2 10 18 8 16 6 14 4 12) (19 20)         

                   = (1 17 15 13 11 9 7 5 3) (2 18 16 14 12 10 8 6 4).                     (6)    

   

Likewise, it is straightforward to construct the operators gk = {gr,ga,gp}k which 

generate the remaining GMk+1 from GM1, k=3,4,…,18. For the rotations gr
k, the 

result is already in eqn. (2), i.e. the molecular wheel has to be rotated in the 
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bearing by k*20° mod 360°. The adjustment ga
k requires the relaxation of the 

shape of the bearing to the new position of the molecular wheel, analogous to the 

two examples but now in general for the azimuthal angle 10° + k*20° mod 360°. 

The permutations gp
k can be constructed recursively, gp

k = gp . gp
k-1, starting from 

eqn. (6). The results gp
k are listed in Table S1.  

 

A special case in Table S1 is gp
9 = (19 20), i. e. nine sequential applications of 

the generating permutation gp are equivalent to the exchange of the nuclei of the 

molecular wheel, without any permutations of the nuclei of the bearing. This is 

confirmed in Figure S1. The subsequent permutations gp
10, gp

11, gp
12, … have the 

same permutations of the nuclei of the bearing as gp, gp
2, gp

3, …, but opposite 

permutations of the nuclei of the wheel. This shows that whenever the wheel 

completes a half cycle, the nuclei of the bearing make a full cycle of permutations. 

        

The adjustment ga (in general: ga
k) of the bearing and the permutation gp (in 

general: gp
k) of the nuclear labels imply that the original coordinates of the nuclei 

in GM1 are replaced by new ones in GM2 (in general: GMk+1); the details are in 

SI VI. 

 

 

The effect of the generator g = {gr, ga, gp} is equivalent another generator g̃ 

which comprises the overall rotation (R) of the reference GM1 by 20° + 180° = 

200° combined with the permutation (19 20) of the nuclei of the wheel, cf. Figure 

1. Symbolically, this alternative set of operations may be written as  

 

the generator �̃� = {�̃�R, �̃�(19 20)}, 

 

 g̃R : φR   (φR + 20° + 180°) mod 360° 

  

 g̃ (19 20) = (19 20).                                                                       (7) 

 

Irrespective of the same effects of the two generators g and g̃, they are entirely 

different, i.e. they involve rather small and rather large amplitude motions of the 

nuclei, respectively. Moreover, g requires significant permutations of all boron 

nuclei, eqn. (3), whereas g̃  invokes permutations of the labels of the nuclear 

wheel, only. The effects of the operators gk (but not the mechanisms!) are the 

same as g̃k i.e. rotation of GM1 by k*200° (mod 360°) combined with k-fold 

exchanges (19 20)k of the nuclei 19,20 of the wheel.   

 

 



24 
 

SI II: The generation of all transition states of the oriented tubular rotor 

La-[B2@B18]-La 

 

The generation of all transition states of the tubular molecular rotor  

La-[B2@B18]-La is entirely analogous to the generation of all global minimum 

structures, cf. SI I. Thus starting from the reference TS18,1, one can generate the 

cyclic sequence TS1,2, TS2,3 ,…,TS17,18 of all TSs by sequential applications of 

the generator g which comprises the familiar three operations, g = {gr, ga, gp), 

eqn. (4). That means g, g2, …, g17 and e= g18 transform TM18,1 into TS1,2, 

TS2,3 ,…,TS17,18 and then back to TS18,1, symbolically 

      

   g         :  TS18,1   TS1,2, TS1,2   TS2,3, …, TS16,17   TS17,18, TS17,18 

                                                                                                                                                              TS18,1 

    gk            :  TS18,1   TSk,k+1 for k=1,2,…, 17,                                                            

    e = g18 :  TS18,1   TS18,1,                                                                       (8) 

 

analogous to eqn. (1) for the GMs. The same effects (but different mechanisms!) 

are achieved by sequential applications of the generator g̃ = {g̃R, g̃ (19 20)}, eqn. 

(7), 

 

      g̃       :  TS18,1  TS1,2, TS1,2  TS2,2, …, TS16,17  TS17,18, TS17,18  

                                                                                                                TS18,1 

     g̃k            :  TS18,1  TSn,n+1 for k=1,2,…, 17.                                                            

     e = g̃18 :  TS18,1  TS18,1.                                                                       (9) 

 

The azimuthal angle of the reference TS18,1 is φ18,1 = 0°, halfway between the 

angles φ18 = 350° and φ1 = 10° of the neighboring GM18 and GM1. As 

consequence, the azimuthal angles φ1,2, …, φ17,18 of the molecular wheel in 

TS1,2, …., TS17,18 are equal to 20°, …, 340°.  

 

The reference TS18,1 and the resulting TS1,2, …, TS17,18 are illustrated in Figures 

1 and S2.   

 

                                 

SI III: The cyclic molecular symmetry group C18(M) of the oriented tubular 

rotor La-[B2@B18]-La 

 

The set of the identity operator e, the generator g and sixteen multiple (k=2, 3, …, 

16, 17) applications of g (cf. SI5) establishes the cyclic molecular symmetry 

group  
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C18(M) = {e, g, g2, g3,….,g17}                                                                        (10) 

 

of the oriented tubular rotor La-[B2@B18]-La, with gk . gk’ = g(k+k’) mod 18. Its order 

is N = 18. According to Ref. 24, it can be represented by the cyclic graph Gr(18,2) 

for 18 connected global minima and 2 energy pathways leading to each minimum. 

For comparison, the order of the full permutation-inversion (FPI) group is 

2!*20!*2. Each global minimum has C2h symmetry, with order 4. Accordingly, 

the total number of all global minima of the FPI group is NFPI = 2!*20!*2/4 = 

20!.  As consequence, at low energies, its graph GrFPI(20!, 2) is split into 

k=NFPI/N = 20! /18 disconnected graphs Gr(18,2). The cyclic molecular 

symmetry group C18(M) is isomorphic to the corresponding groups for the 

rotations of the molecular wheel in the bearing, for the adjustment of the bearing 

to the new position of the wheel, and for the permutations of the nuclear labels, 

 

C18(M)r = {er, gr, gr
2, gr

3,…., gr
17}  

 

C18(M)a = {ea, ga, ga
2, ga

3,…., ga
17} 

 

C18(M)p = {ep, gp, gp
2, gp

3,…., gp
17}.                                                       

                                                                                                                       (11) 

 

 

The four group theorems (completeness of the group, existence of the identity e, 

existence of the inverse element g18-k of gk, and the associative law) are satisfied 

obviously.  Moreover, the group operations commute, gk. gk’ = gk’. gk, i. e. the 

cyclic molecular symmetry group C18(M) is Abelian. 

 

The cyclic molecular symmetry group C18(M) is also isomorphic to the group 

 

 �̃�18(M) = {ẽ, g̃, g̃2, g̃3, …., g̃17}                                                                   (12) 

 

of the combined operations, eqn. (7), but again, the present g and the alternative 

g̃ are entirely different.       

 

The general properties of cyclic groups imply that the present cyclic group C18(M) 

has 18 one-dimensional irreducible representations (IRREPs) Γn, n=0,1,2,…,17  
with characters [13] 

 

            χΓn(gk) = ϵnk,   ϵ=exp(- 2πi/18) ,     n,k = 0,1,2,…,17.                          (13)                                               

 

The corresponding symmetry projection operators for IRREP Γn are   



26 
 

 

       PΓn = (1/18)  Σk=0
17 χΓn(gk)* gk  , n = 0,1,2,…,17. 

                                                                                                                        (14) 

   

Analogous expressions (with g replaced by g̃ etc) hold for the other isomorphic 

cyclic molecular symmetry groups, particularly for �̃�18(M) and also for C18(M)r, 

C18(M)a and C18(M)p. 

 

The combined operations g̃, eqn. (7), commute with the molecular Hamiltonian 

Hmol, because the molecular energies do not depend, neither on the molecular 

orientation, nor on the exchange of the labels of nuclei 19 and 20. Likewise, the 

combined operation g, eqn. (4), commutes with Hmol – after all, the effects of g 

and g̃  are equivalent. Moreover, repeated applications gk of g (or g̃ k of g̃ ) 

commute with Hmol. As consequence, the symmetry projection operators (14) of 

C18(M) (or analogous symmetry projection operators of �̃�18(M)) commute with 

Hmol, 

 

[Hmol, gk] = [Hmol, PΓn] = 0.                                                                           (15) 

 

The molecular eigenstates are characterized, therefore, not only by their 

eigenenergies, but they can also be assigned to specific IRREPs Γn of C18(M), 

with characters χΓn(gk). This “unified” assignment is more general compared to 

the assignments of the IRREPs ag, bg, au and bu of the “local” molecular point 

groups C2h of the individual GMs. For example, the normal mode v8
GM can be 

assigned to IRREP bg for the C2h symmetry of GM1, but it cannot be assigned to 

any IRREP of the C2h symmetries of the other GMs, because they have different 

local symmetry elements e. g. the C2 axes of the GMs have different orientations. 

In contrast, eqn. (15) implies that one can assign the vibrational modes of La-

[B2@B18]-La to the IRREPs Γn of the molecular symmetry group C18(M), and 

these modes comprise all GMs. An important example, namely for the “unified” 

extension of all “local” normal modes v8
GM of all GMs to the corresponding 

“unified” vibrational modes with IRREPs Γn of the molecular symmetry group 

C18(M) of La-[B2@B18]-La, will be presented in SI IV. 

 

SI IV: Solution of the Schrödinger equation for the model of the rotating 

molecular wheel in the pseudo-rotating bearing of the oriented tubular rotor 

La-[B2@B18]-La 

 

 

The rotation of the molecular wheel (B2) along the angle φ in the oriented 

pseudo-rotating tubular bearing (B18) of the rotor La-[B2@B18]-La, with the two 
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La nuclei as spectators on the cylindrical axis, is described quantum 

mechanically by means of the time independent Schrödinger equation (TISE)  

 

H(φ) Ψm(φ) = Em Ψm(φ).                                                                             (16) 

 

The model Hamiltonian  

 

H(φ) = T(φ) + V(φ)                                                                                    (17) 

 

in eqn. (16) accounts for the kinetic and potential energies of the 

rotational/pseudo-rotational motions. Specifically, 

 

T(φ) = lφ
2/(2 Ieff)                                                                                              (18) 

 

with effective moment of inertia Ieff, as derived in SI V, and with angular 

momentum operator 

 

lφ = - i ℏ d/dφ                                                                                             (19) 

 

for the rotation of the molecular wheel in the oriented pseudo-rotating tubular 

bearing. The cyclic model potential V(φ) = 0.5 * Vb [1 + cos(18 φ)] with its 

eighteen equivalent potential minima supporting eighteen equivalent global 

minimum structures, separated by eighteen equivalent transition states, is shown 

in Figure 3.  

 

The TISE (16) is solved for the rotational/pseudo-rotational eigenenergies Em 

and eigenfunctions Ψm(φ) of the eigenstates labeled m = 0,1,2,…, with cyclic 

boundary conditions  

 

Ψm(φ=0) = Ψm(φ=2π),                                                                               (20) 

 

by means of the methods which have been developed for planar boron rotors 

such as B11
- or B13

+, cf. Refs. [14, 16]. Suffice it here to say that the 

eigenfunctions are expanded in terms of normalized basis functions (1/√2π) exp(i 

l φ) which satisfy the boundary conditions (20) automatically,   

 

Ψm(φ) = Σl=lmin
lmax cml (1/√2π) exp(i l φ).                                                        (21) 

 

In principle, the sum Σl=lmin
lmax should run from lmin = -∞ to lmax = +∞. In practice, 

converged results are obtained by truncating the sum to lower and upper 
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boundaries lmin = 360 and lmax = 360. The expansion (21) allows to transform the 

TISE (16) into the algebraic version  

 

H cm = cm Em                                                                                                                 (22) 

 

with the vector cm of the expansion coefficients cml. The notations are also 

adapted from Refs. [14, 16]; in particular, the ground state is denoted by the 

quantum number m=0, and the quantum numbers m increase with energy Em.  

 

The resulting eigenenergies Em with quantum numbers m=0-53 are listed in 

Table S3. This Table is for the complete set of eigenstates with energies below 

the potential barrier Vb. The energy levels for six examples with quantum 

numbers m = 0, 17, 18, 35, 36, 53 are illustrated in Figure S5. Apparently, these 

54 energies are arranged in three narrow “bands” which are separated from each 

other by rather large energy gaps. The bands may be labeled by “band energy 

quantum numbers” l=0,1,2 (see also eqn. (23) below). Each energy band has 

eighteen rotational/pseudo-rotational eigenstates, i. e. the lowest band (l=0) has 

the states with energies Em labeled m=0-17, the first excited band (l=1) is for 

m=18-35, and the second excited band (l=2) contains Em labeled m=36-53. In 

each band, the lowest and highest energies are non-degenerate, whereas all other 

energies are doubly degenerate, e.g. E1 = E2, E3 = E4, …., E15 = E16 for the lowest 

band (l=0), E19 = E20, … , E33 = E34 for band l=1 and E37 = E38, … , E51 = E52 for 

band l=2.  

                               

The six energy levels which are shown in Figure S5 are the lowest and highest 

non-degenerate levels of each band. The corresponding band widths of energy 

bands l=0,1 and 2 are equal to 0.035, 1.157 and 13.833 h c cm-1, respectively, i. 

e. they grow rapidly with band energy quantum number l. The energy gaps 

between the centers of bands l = 0 and 1 is ΔE0,1 = (299.2 – 103.7 = 195.5) h c 

cm-1. The corresponding energy gap between bands l=1 and 2 is ΔE1,2 = (467.5 – 

299.2 = 168.3) h c cm-1. 

 

To interpret the results for the rotational/pseudo-rotational levels of the oriented 

tubular molecular rotor La-[B2@B18]-La, it is illuminating to consider first, for 

reference, the traditional picture of eighteen individual, non-interacting global 

minimum structures. In normal mode approximation, each of the GMs has its 

individual, non-interacting harmonic potential along the corresponding normal 

mode- here this is the selected bg normal mode vGM =8 with vibrational energy 

quantum ℏω8
GM = 234.79 h c cm-1. Accordingly, the eighteen GMs have 

corresponding eighteen degenerate eigenenergies. In harmonic approximation, 

the lowest three levels are El=0 = 0.5 ℏω8
GM = 117.395 h c cm-1 , El=1 = 1.5 ℏω8

GM 
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= 352.185 h c cm-1 and El=2 = 2.5 ℏω8
GM = 586.975 h c cm-1 , respectively- all 

below the potential barrier Vb.  

 

In contrast with the traditional picture of eighteen non-interacting GMs, the 

unified quantum mechanical picture provides the anharmonic potential V(φ) with 

eighteen equivalent minima supporting eighteen equivalent GMs which interact. 

For the present energies below the potential barrier, the interaction is by 

tunneling. For didactic purpose, it is helpful to recall that tunneling in a double 

well potential with two minima for two GMs yields tunneling splitting of pairs 

of two degenerate levels of two individual GMs into a pairs of two non-

degenerate levels of the interacting GMs. The tunneling splitting ΔE is related to 

the tunneling time T by the relation ΔE * T = h. The higher is the barrier, the 

more difficult is the tunneling, that means the longer is T and the narrower is ΔE. 

Excited states have higher energies closer to the potential barrier – this facilitates 

the tunneling, decreases the tunneling time T and hence increases the tunneling 

splitting ΔE. By analogy, the present potential with eighteen potential wells 

yields tunneling splitting of sets of eighteen degenerate levels of eighteen 

individual GMs into “bands” of (partially) non-degenerate levels of the 

interacting GMs. The tunneling splitting ΔE of the double well corresponds to 

the band width ΔE. The higher is the barrier, the more difficult is the tunneling, 

and the narrower is the band width ΔE. Excited states have higher energies closer 

to the potential barrier – this facilitates the tunneling, and increases the band 

width ΔE.  

 

The gaps between the centers of the bands, ΔE0,1 = 195.5 h c cm-1 and ΔE1,2 = 

168.3 h c cm-1, of the interacting GMs are smaller than the reference vibrational 

quantum ℏω8
GM = 234.79 h c cm-1 of the non-interacting GMs. There are two 

effects which contribute to this deviation: Firstly, the anharmonicity of the 

cosinusoidal potential implies the systematic decrease from the harmonic 

reference to ΔE0,1 and then further down to ΔE1,2. Secondly, the present choice 

of the approximate value of the effective moment of inertia, Ieff = 68.98 uÅ2, uses 

the value of the vibrational quantum |ℏωi
TS| = 217.84 h c cm-1 of the normal mode 

vi
TS of the transition state, instead of the higher value ℏω8

GM = 234.79 h c cm-1 

for the global minimum, cf. SI V.  

 

The wavefunctions Ψm(φ) which are shown in Figures 3 and S5 correspond to 

densities ρm(φ) = |Ψm(φ)|2 which look the same in analogous domains of the 

eighteen potential wells of V(φ). This property holds for all eigenfunctions, also 

for those which are not shown in Figure S5. This means that the 

rotational/pseudo-rotational eigenstates of the model La-[B2@B18]-La represent 

equal populations of all eighteen equivalent GMs. In particular, the ground state 
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wavefunction Ψm=0(φ) yields the density ρm=0(φ) with eighteen equivalent 

maxima which are centered at the potential minima. This corresponds to the 

unified quantum mechanical structure of La-[B2@B18]-La which is illustrated in 

Figures 2 and S4. It has D9h symmetry (instead of C2h for the individual GMs).  

 

From SI III, eqn. (15), it follows that the eigenstates of La-[B2@B18]-La should 

have two quantum numbers, namely for the energy and for the IRREP. By 

analogy with the results of Ref. [16], we can identify the previous quantum 

number m with two quantum numbers  

 

  m = (l,n)                                                                                                    (23) 

 

where l denotes the energy band, and n labels the IRREP Γn of the cyclic group 

C18(M). The IRREP Γn of the wavefunction Ψm(φ) ≡ Ψl,n(φ) can be determined 

by means of the rule (cf. Ref. [15], eqn. (35)) 

 

Γn   g Ψl,n(φ) = ϵn Ψl,n(φ)                                                                       (24) 

 

where ϵ=exp(- 2πi/18), cf. eqn. (13). For example, the wavefunctions which are 

shown in Figure S5 have  

 

g  Ψm=0(φ)  ≡ g Ψl=0,n=0(φ) =   Ψl=0,n=0(φ) = ϵ0 Ψl=0,n=0(φ)  IRREP Γn=0
 

g  Ψm=18(φ) ≡ g Ψl=1,n=9(φ) = - Ψl=1,n=9(φ) = ϵ9 Ψl=1,n=9(φ)  IRREP Γn=9
 

g  Ψm=36(φ) ≡ g Ψl=2,n=0(φ) =   Ψl=2,n=0(φ) = ϵ0 Ψl=2,n=0(φ)  IRREP Γn=0
 

g  Ψm=53(φ) ≡ g Ψl=2,n=9(φ) = - Ψl=2,n=9(φ) = ϵ9 Ψl=2,n=9(φ)  IRREP Γn=9. 

                                                                                                                         (25) 

 

The assignments of the IRREPs of the eigenfunctions correlates with unique sets 

of non-zero coefficients in the expansion (21). For example, Ψm=0 and Ψm=36 have 

non-zero coefficients cml, for l = …, -36, -18, 0, 18, 36, …, whereas Ψm=18 and 

Ψm=53 have non-zero coefficients cml, for l = …,-27, -9, 9, 27, …  

 

A complete list of all assignments of quantum numbers (23) is in Table S3. 

Accordingly, the eighteen eigenfunctions in each band have different IRREPs 

Γn=0,  Γn=1, Γn=2,…., Γn=17.   This has enormous consequences. Namely, according 

to eqns. (5) and (21), the total wavefunctions consist of the spatial wave functions 

Ψl,n(φ) with IRREP  Γn  times nuclear spin wave functions Ψn’ with IRREP Γn’ 

where n’ = 9 - n (for n = 0, 1,…, 9) or n’ = 27 - n (for n = 10,11,…,17). This is 

the only way to satisfy the anti-symmetry of the total wave function, in accord 

with g Ψtotal = ϵn ϵ9-n Ψtotal = ϵ9 Ψtotal = - Ψtotal  (or = ϵn ϵ27 -n Ψtotal = ϵ27 Ψtotal = 
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 -Ψtotal), cf. eqn. (5). In each energy band, all wavefunctions belong, therefore, to 

different nuclear spin isomers. This implies that it is impossible to prepare 

superpositions of eigenfunctions which belong to the same energy band. As 

consequence, it is impossible to prepare wavefunctions which are localized in 

individual potential wells supporting individual GMs of La-[B2@B18]-La. Hence 

the oriented tubular molecular rotor La-[B2@B18]-La will never be observed as 

GM.  

   

SI V: The effective moment of inertia Ieff of the rotation of the molecular 

wheel in the pseudo-rotating tubular bearing of the oriented rotor  

La-[B2@B18]-La  

 

This chapter presents two complementary approaches to the effective moment of 

inertia Ieff which is used in the Schrödinger eqn. (16) (cf. eqns. (17)-(19)) for the 

calculation of the rotational/pseudo-rotational eigenstates of the oriented tubular 

rotor La-[B2@B18]-La. The two approaches involve different approximations. At 

the end, we shall compare the results.    

  

The first approach considers the local dynamics of the tubular rotor when it 

passes through one of its global minimum structures, say GMk at φk, or 

alternatively when it crosses one of its transition states, say TSk,k+1 at  φk,k+1. The 

potential energy curve at φk is approximately harmonic,  

 

V(φ) ≈ 0.5 kGM
φ (φ – φk)2                                                                               (26) 

 

with force constant  

 

 kGM
φ = d2V/dφ2|φ=φk = 0.5 * 182 * Vb.                                                           (27) 

 

This angular force constant is equal to the effective moment of inertia Ieff times 

the square of the frequency of the vibration which induces the path from GMk to 

the neighboring TSk-1,k and TSk,k+1 - in the present case, this is approximately the 

normal mode labeled vGM =8 with ℏω8
GM = 234.79 h c cm-1, cf. Table S1,  

 

 kGM
φ = Ieff

GM
 * (ω8

GM)2.                                                                               (28) 

 

Eqns. (27), (28) yield   

 

Ieff
GM =  kGM

φ / (ω8
GM)2 = 0.5 * 182 Vb / (ω8

GM)2 = 59.38 uÅ2.                    (29) 
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Likewise, one can use the harmonic approximation of V(φ) at a transition state, 

say TSk,k+1 at  φk,k+1 

 

V(φ) ≈ Vb - 0.5 kTS
φ (φ – φk,k+1)2                                                                   (30) 

 

with negative force constant - kTS
φ < 0 for the vibration which induces the path 

from TSk,k+1 to the neighboring GMk and GMk+1 – this is approximately the 

normal mode with imaginary frequency, |ℏωi
TS| = 217.84 h c cm-1.  The 

corresponding result is  

 

Ieff
TS = |kTS

φ |/ |ωi
TS|2 = 0.5 * 182 Vb / |ωi

TS|2 = 68.98 uÅ2.                         (31) 

 

The results (29), (31) of this first approach suggest that Ieff is of the order 60-70 

uÅ2.  

 

The second approach calculates Ieff as sum of two contributions,  

 

Ieff = Irot + Ipsr,                                                                                             (32) 

 

where 

  

Irot = mB  (R19
GM)2 + mB  (R20

GM)2                                                                  (33) 

 

is moment of inertia for the rotation of the wheel in the tubular bearing, and Ipsr 

represents the effect of the pseudo-rotating nuclei of the bearing. The values of 

the radial nuclear coordinates of the boron nuclei of the wheel (i = 19, 20) yield  

 

Irot = 14.73 uÅ2.                                                                                           (34) 

 

Comparison of eqns. (29), (31) and (32), (34) reveals that Irot is much smaller 

than Ieff. This suggests that the main contribution to the effective moment of 

inertia is not due to the rotation of the wheel, but to the pseudo-rotations of the 

18 nuclei of the tubular bearing. For a rough estimate of Ipsr, let us consider as a 

reference the limiting case where those nuclei move on smooth ellipsoidal 

pseudo-rotational paths. The coordinates listed in Table S2a yield radial 

variations 2 ΔRbearing from 2.2426Å to 2.6476Å, angular variations Δφbearing of 

±1.9456°, and variations 2 ΔZbearing along z from 0.6743 Å to 0.8718 Å. By 

analogy with eqn. (33), we obtain the lower limit 

  

Ipsr > 18 mB * 4 [ΔRbearing
2 + (Rbearing Δφbearing)2 + ΔZbearing

2]  
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     = 18 * 11.009 * 4 * [0.20252 + (2.3574*0.03396)2 + 0.098752] uÅ2 

 

     = 18 * 11.009 * 4 * 0.05716 uÅ2 = 45.31 uÅ2.                                      (35) 

 

The factor 4 accounts for the fact that a full rotational cycle of the the nuclei of 

the molecular wheel is associated with two pseudo-rotational cycles of the nuclei 

of the tubular bearing.  

 

Comparison of eqns. (32), (34), (35) confirms that Ieff is dominated by the effects 

of the tubular bearing, not by the wheel. Most important for the pseudo-rotational 

contribution Ipsr to Ieff are the radial motions of the nuclei of the bearing, whereas 

motions along φ and z are less efficient.  

 

The reference value (14.73 + 45.31 = 60.04) uÅ2 of the sum Irot + Ipsr = Ieff 

obtained by the second approach agrees well with the estimate Ieff
GM = 59.38 uÅ2 

derived by the first approach. It is, therefore, fair to say that the two approaches 

support each other, in spite of the different approximations. One should keep in 

mind, however, that the result of the second approach has been estimated for the 

ideal scenario of ellipsoidal pseudo-rotational paths. Figure S4 shows, however, 

that the paths have various turns. These cause retardations and accelerations 

which tend to increase the value of Ieff. Hence, we use the larger value Ieff
TS = 

68.98 uÅ2 as effective moment of inertia, cf. eqn. (31), whereas the estimate 

Ieff
GM = 59.38 uÅ2 in eqn. (29) is considered as lower limit. The preference of the 

value of Ieff at the transition state is also confirmed by the corresponding vector 

arrow plots of the bg normal mode at the TSs, which serve as better tangents to 

the pseudo-rotational path than the bg mode at the GMs, cf. SI VIII.   

 

SI VI: The nuclear coordinates of 18 equivalent global minimum structures 

and 18 transition states of the oriented tubular rotor La-[B2@B18]-La 

 
This Section consists of six parts: SI VI-A specifies the nuclear coordinates of 

the reference global minimum structure GM1 of the oriented tubular rotor  

La-[B2@B18]-La, in the laboratory frame. Here the nuclei are labeled by i = 1, …, 

22, with i = 1, …, 18 for the boron nuclei of the tubular bearing, i = 19, 20 for 

the boron nuclei of the molecular wheel, and i = 21, 22 for the metal nuclei. SI 

VI-B has the nuclear coordinates of the boron nuclei of the wheel and of the 

metal nuclei, for all GMk, k=1, …, 18. SI VI-C presents the nuclear coordinates 

of the eighteen nuclei of the tubular bearing for all GMs. Sub-sections SI VI-D, 

SI VI-E and SI VI-F are for the nuclear coordinates of the transition states, 

analogous to SI VI-A, SI VI-B and SI VI-C for the GMs. Specifically, SI VI-D 

has the nuclear coordinates of the reference TS18,1, SI VI-B has the nuclear 
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coordinates of the boron nuclei of the wheel and of the metal nuclei, for all TSk,k+1, 

k=18, 1, …, 17, and SI VI-C presents the nuclear coordinates of the eighteen 

nuclei of the tubular bearing for all TSs.   

 

SI VI-A: The nuclear coordinates of the reference global minimum 

structure GM1 of the oriented tubular rotor La-[B2@B18]-La 

 

The nuclear coordinates of GM1 of La-[B2@B18]-La are expressed conveniently 

in terms of cylindrical coordinates, in the laboratory frame. Accordingly, the 

boron nuclei of the wheel (i=19,20) are at (R19
GM = 0.8177 Å, Φ19

GM = φ1 = 10°, 

Z19
GM = -0.0017Å) and (R20

GM = R19
GM, Φ20

GM = Φ19
GM + 180°, Z20

GM
 = -Z19

GM). 

The nuclear coordinates of the two metal atoms (i=21,22) are (R21
GM = 0 Å, 

Φ21
GM = 0°, Z21

GM = 2.3981 Å) and (R22
GM = 0 Å, Φ22

GM = 0°, Z22
GM = -Z21

GM), 

with arbitrary and irrelevant values of Φ21
GM and Φ22

GM. The cylindrical 

coordinates of the nuclei of the tubular bearing (i=1-18) are specified using the 

notation (Ri
GM, Φi +ΔΦi

GM, Zi
GM). Here we set Φ1 = 10°, Φ2 =30°, Φ3 = 50°, …., 

Φ18 = 350°, with equal angular spacings of 20°; these angles Φi are called “the 

reference angles” – this is the abbreviated version of the explicit but lengthy term 

“the reference angles of the nuclei labeled i of the bearing of the reference GM1”. 

The ΔΦi
GM are the deviations of the cylindrical angles from Φi. The fixation of 

the reference angles implies orientation of the scaffold of the bearing in the 

laboratory, except for the small deviations ΔΦi
GM. The azimuthal angle φ of the 

wheel with respect to the bearing can then be interpreted as the angle between 

the laboratory x-axis and the projection of the wheel on the x-y-plane.  

 

The nuclear point group C2h of GM1 implies the following symmetry rules for 

the cylindrical coordinates (these rules are to be applied cyclically, that means 

modulo 18):  

 

 R1+λ
GM

 = R10-λ
GM = R10+λ

GM
 = R19-λ

GM, λ = 0, …, 4; 

 

 (this means R1
GM = R10

GM, R2
GM

 = R9
GM = R11

GM = R18
GM, R3

GM
 = R8

GM
 = 

R12
GM = R17

GM, R4
GM = R7

GM = R13
GM = R16

GM, R5
GM = R6

GM = R14
GM = R15

GM.) 

 

 ΔΦ1+λ
GM

 = -ΔΦ10-λ
GM = ΔΦ10+λ

GM = -ΔΦ19-λ
GM, λ = 0, …, 4;  

 

 (this means ΔΦ1
GM = ΔΦ10

GM = 0°, ΔΦ2
GM

 = -ΔΦ9
GM = ΔΦ11

GM = -ΔΦ18
GM, 

ΔΦ3
GM

 = -ΔΦ8
GM

 = ΔΦ12
GM = ΔΦ17

GM, ΔΦ4
GM = -ΔΦ7

GM = ΔΦ13
GM = -ΔΦ16

GM, 

ΔΦ5
GM = -ΔΦ6

GM = ΔΦ14
GM = -ΔΦ15

GM.) 

 

  and   
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  Z1+λ
GM

 = -Z10-λ
GM = -Z10+λ

GM = Z19-λ
GM. 

 

  (this means Z1
GM = -Z10

GM, Z2
GM

 = -Z9
GM = -Z11

GM = Z18
GM, Z3

GM
 = -Z8

GM
 =    

-Z12
GM = Z17

GM, Z4
GM = -Z7

GM = -Z13
GM = Z16

GM, Z5
GM = -Z6

GM = -Z14
GM = 

Z15
GM.)                                                                                                         (36) 

 

The values of the cylindrical coordinates (Ri
GM, ΔΦi

GM, Zi
GM) of the nuclei of the 

bearing of GM1 of La2[B2@B18],  i=1,…,18 are listed in Table S2a. The quantum 

chemical results are obtained at the PBE033 level with the 6-311+G(d)34 basis set 

for B and the Stuttgart relativistic small-core pseudopotential for La35,36 using 

the Gaussian 09 program.37 The PBE0 results are in perfect agreement with the 

symmetry rule (36).  

 

SI VI-B: The coordinates of the boron nuclei of the molecular wheel and of 

the metal nuclei for 18 equivalent global minimum structures of the 

oriented tubular rotor La-[B2@B18]-La 

 

The cylindrical coordinates of the nuclei of the molecular wheel (i = 19, 20) and 

of the metal atoms (i = 21, 22) for arbitrary global minima GMk (k = 1, …, 18) 

of La-[B2@B18]-La are 

 

(R19
GM = 0.8177 Å, Φ19

GM = φk = -10°+k*20°, Z19
GM = (-1)k * 0.0117 Å), 

(R20
GM = R19

GM,          Φ20
GM = Φ19

GM + 180°,           Z20
GM

 = -Z19
GM), 

(R21
GM = 0 Å,          Φ21

GM = 0°,                          Z21
GM = 2.3981 Å)     

(R22
GM = 0 Å,          Φ22

GM = 0°,                          Z22
GM = -Z21

GM)   for GMk.         

                                                                                                                (37)  

 

In other words, when proceeding from GMk to GMk+1, then the azimuthal angle 

φ of the wheel increases by 20°, its diameter is robust, and the position of its 

nucleus 19 changes from slightly below (above) to slightly above (below) the x-

y-plane, and vice versa for nucleus 20. The metal nuclei keep the same positions 

on the rotational axis, for all GMs.     

 

SI VI-C: The coordinates of the boron nuclei of the tubular bearing for 18 

equivalent global minimum structures of the oriented tubular rotor La-

[B2@B18]-La 

 

In Subsection SI VI-A we have specified the cylindrical coordinates of the boron 

nuclei labeled i=1, 2, …, 18 of the tubular bearing of the reference global 
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minimum structure GMk=1 of the oriented La-[B2@B18]-La, see also Figures 1, 

S1 and Table S2a.   

 

The goal of this Subsection SI VI-C is to derive the cylindrical coordinates of 

the boron nuclei in tubular bearings of all GMs. For this purpose, it is helpful (a) 

recognize that the nuclear coordinates of GMk=1 are just a special case of a more 

general expression, ready for applications to all other GMs. Next we shall 

consider two examples (similar to Section SI II), namely (b) first the nuclear 

coordinates of GM3 and (c) then those of GM2. Finally (d) the compact general 

expression for the cylindrical coordinates of the nuclei i = 1, 2, …, 18 in the 

global minimum GMk with arbitrary label i will be extrapolated.    

 

(a) For GMk=1, the cylindrical coordinates of the nuclei i=1, 2, …, 18 of the 

bearing can be written in compact notation as 

 

Gi,i = (Ri
GM, Φi + ΔΦi

GM, Zi
GM).                                                                      (38) 

 

(The letter “G” reminds of “G-lobal minimum”.) It is rewarding that eqn. (38) 

may be recognized as special case of the general expression 

 

G19-k+i,i
 
   = (R19-k+i

GM, Φi + ΔΦ19-k+i
GM, (-1)k-1 Z19-k+i

GM)  

              ≡ (R1-k+i
GM,  Φi + ΔΦ1-k+i

GM,   (-1)k-1 Z1-k+i
GM).                                  (39) 

 

The first subscript 19-k+i of G19-k+i,i depends on k and i, where the label k 

specifies the GM (here k=1 for GMk=1), and i specifies the reference angle Φi of 

the nucleus of the bearing. The subscripts “19-k+i” or “1-k+i” are applied 

modulo 18, that means in a cyclic manner, (19-k+i) mod 18 = (1-k+i) mod 18. 

The second subscript i of G19-k+i,i specifies the reference angle Φi. 

 

 

(b) As explained for the first example which has been discussed in Section SI II, 

GMk=3 can be generated by rotation gr
~2 of GMk=1 by 2*20° (+ 2*180°). This way, 

the labels i=1,2,3,4,…,18 of the nuclei in GM1 are replaced by the labels 

17,18,1,2,…,16 in GMk=3, respectively, cf. Figure 1. As consequence, for 

example the cylindrical coordinates G1,1
GM = (R1

GM, Φ1 + ΔΦ1
GM, Z1

GM) of the 

nucleus i=1 in GM1 at the reference angle Φi=1
 are replaced by the coordinates 

G17,1GM = (R17
GM, Φ1 + ΔΦ17

GM, Z17
GM) of the nucleus 17 in GMk=3. It is 

rewarding that this can be rewritten in terms of the general expression (39) as 

G19-k+1,i=1 = (R19-k+1
GM, Φi=1 + ΔΦ19-k+1

GM, (-1)k-1 Z19-k+1
GM) for k=3. Likewise, the 

nuclei i = 17, 18, 1, 2, …, 16 in GMk=3 have new coordinates G19-k+i,i =  

(R19-k+i
GM, Φi + ΔΦ19-k+i

GM, (-1)k-1 Z19-k+i
GM). 
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(c) According to the second example which has been discussed in Section SI II, 

GMk=2 can be generated by rotation gR
~ of GMk=1 by 20°+180° = 200°, 

accompanied with the permutation g(19 20)
~ of the nuclear labels of the wheel. This 

way, the labels i = 1, 2, …., 10, 11, …,18 of the nuclei in GM1 are replaced by 

the labels 9, 10, …, 18, 1, …, 8 in GMk=2, respectively, cf. Figure 1. As 

consequence, the cylindrical coordinates G1,1 = (R1
GM, Φ1 + ΔΦ1

GM, Z1
GM) of the 

nucleus i=1 in GM1 at the reference angle Φi=1
GM are replaced by the coordinates 

(R9
GM, Φ1 + ΔΦ9

GM, Z9
GM) of the nucleus 9 in GMk=2. The symmetry relations 

(36) imply, however, that these coordinates are the same as (R18
GM, Φ1 + ΔΦ18

GM, 

- Z18
GM). Again, it is rewarding that this can be rewritten in terms of the general 

expression (39) as G19-k+1.i = (R19-k+1
GM, Φi=1 + ΔΦ19-k+1

GM, (-1)k-1 Z19-k+1
GM) for 

k=2. Likewise, the nuclei i = 9, 10, …, 18, 1, …, 8 in GMk=2 at the reference 

angles Φ1, Φ2, …., Φ10, Φ11, …, Φ18 have new coordinates G19-k+i.i = (R19-k+i
GM, 

Φi + ΔΦ19-k+i
GM, (-1)k-1 Z19-k+i

GM). 

 

(d) Extrapolation of the results for the examples (a) - (c) to all other global 

minimum structures yields the general result, eqn. (39). The corresponding 

cylindrical coordinates of all the nuclei in the bearings of all GMs are listed in 

Table S2b.  

 

The compact rule (39) has been derived by means of various results of the 

previous Sections SI II and SI VI-A. In particular, GMk is generated by 

application of the operator g~k-1, equivalent to (but different from) gk-1, on the 

reference GM1. This implies the permutation gp
k-1 of the nuclear labels 1, 2, 3, …, 

18 in the bearing of GM1 to new labels in GMk, as documented in Figures 1, 

SI1and also in Tables S1, S2a. The symmetry relations (36) which are based on 

the C2h symmetry of the reference GM1 of La-[B2@B18]-La then allow to express 

the new cylindrical coordinates of the nuclei at the reference angles Φi of the 

tubular bearings of all GMk by the compact rule (39).  

 

SI VI-D: The nuclear coordinates of the reference transition state TS18,1 of 

the oriented tubular rotor La-[B2@B18]-La 

 

The nuclear coordinates of TS18,1 (like those of GM1) of La-[B2@B18]-La are 

expressed conveniently in terms of cylindrical coordinates. Accordingly, the 

boron nuclei of the wheel (i=19,20) are at (R19
TS = 0.8182 Å, Φ19

TS = φ18,1 = 0°, 

Z19
TS = 0 Å) and (R20

TS = R19
TS, Φ20

TS = Φ19
TS + 180°, Z20

TS
 = 0 Å). The nuclear 

coordinates of the two metal atoms (i=21,22) are (R21
TS = 0 Å, Φ21

TS = 0°, Z21
TS 
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= 2.3916 Å) and (R22
TS = 0 Å, Φ22

TS = 0°, Z22
TS = -Z21

TS), with arbitrary and 

irrelevant values of Φ21
TS and Φ22

TS.  

 

The cylindrical coordinates of the nuclei of the bearing (i=1-18) are specified 

using the notation (Ri
TS, Φi +ΔΦi

TS, Zi
TS), with the same “reference angles” Φi as 

for GM1. The ΔΦi
TS are the deviations of the cylindrical angles from Φi. Note 

that the labels i=1-18 for the reference angles coincide with the labels of the 

nuclei i=1-18 in the reference global minimum structure GM1. This coincidence 

yields compact expressions for the coordinates of all nuclei of all transition states, 

analogous to those for the global minima, and this is the reason for identifying 

the nuclear labels of TS18,1 with those of GM1. For comparison, the alternative 

choice namely identifying the nuclear labels of TS18,1 with those of GM18 would 

not allow this formal analogy.  

 

The nuclear point group C2h of TS18,1 implies the following symmetry rules for 

the cylindrical coordinates (these rules are applied cyclically, that means modulo 

18):  

 

 R5-λ
TS

 = R5+λ
TS = R14-λ

TS
 = R14+λ

TS, λ = 0, …, 4; 

 

(this means R5
TS = R14

TS, R4
TS

 = R6
TS = R13

TS = R15
TS, R3

TS
 = R7

TS
 = R12

TS = 

R16
TS, R2

TS = R8
TS = R11

TS = R17
TS, R1

TS = R9
TS = R10

TS = R18
TS.) 

 

 ΔΦ5-λ
TS

 = -ΔΦ5+λ
TS = ΔΦ14-λ

TS = -ΔΦ14+λ
TS, λ = 0, …, 4;  

 

 (this means ΔΦ5
TS = ΔΦ14

TS = 0°, ΔΦ4
TS

 = -ΔΦ6
TS = ΔΦ13

TS = -ΔΦ15
TS, ΔΦ3

TS
 

= -ΔΦ7
TS

 = ΔΦ12
TS = -ΔΦ16

TS, ΔΦ2
TS = -ΔΦ8

TS = ΔΦ11
TS = -ΔΦ17

TS, ΔΦ1
TS = -

ΔΦ9
TS = ΔΦ10

TS = -ΔΦ18
TS.) 

 

and   

 

  Z5-λ
TS

 = Z5+λ
TS = -Z14-λ

TS = -Z14+λ
TS,  λ = 0, …, 4. 

 

  (this means Z5
TS = -Z14

TS, Z4
TS

 = Z6
TS = -Z13

TS = -Z15
TS, Z3

TS
 = Z7

TS
 = -Z12

TS = 

-Z15
TS, Z2

TS = Z8
TS = -Z11

TS = -Z17
TS, Z1

TS = Z9
TS = -Z10

TS = -Z18
TS.)            (40) 

 

The values of the cylindrical coordinates (Ri
TS, ΔΦi

TS, Zi
TS) of the nuclei of the 

bearing of TS18,1 of La2[B2@B18], I = 1, …, 18 are listed in Table S2b, adapted 

from Ref. [1]. They are in good but not in perfect agreement with the symmetry 

rule (40). For example, Table S2b has the value ΔΦ5
TS = 0.0012° instead of 0 °, 

or the value of ΔΦ4
TS

 is listed as 1.1927°, whereas -ΔΦ6
TS = 1.1887°, very close 
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to, but not the same as ΔΦ4
TS. These small deviations are consequences of 

numerically imperfect rotations of the quantum chemical result for the TS in Ref. 

[1] to the present orientation, with the molecular wheel of TS18,1 at φ19 = 0° and 

with the cylindrical axis perpendicular to the x-y-plane. The deviations are below 

the graphical resolution of the Figures for the presentations of the subsequent 

results, however, so we consider them as negligible. 

 

SI VI-E: The coordinates of the boron nuclei of the molecular wheel and of 

the metal nuclei for 18 equivalent transition states of the oriented tubular 

rotor La-[B2@B18]-La 

 

The cylindrical coordinates of the boron nuclei of the wheel (I = 19, 20) and of 

the metal nuclei (I = 21, 22) of TSk,k+1 (k=18,1,2,…,17) are  

   

(R19
TS = 0.8182 Å, Φ19

TS = k*20°,           Z19
TS = 0 Å), 

(R20
TS = R19

TS,          Φ20
TS = Φ19

TS + 180°, Z20
TS

 = 0 Å), 

(R21
TS = 0 Å,         Φ21

TS = 0°,                   Z21
TS = 2.3916 Å)  

(R22
TS = 0 Å,         Φ22

TS = 0°,                   Z22
TS = -Z21

TS)   for TSk,k+1,      

                                                                                                           (41) 

 

 

compare with eqn. (38) for the GMs. In other words, all TSs have the molecular 

wheel in the x-y-plane, with robust diameter, and when proceeding from TSk,k+1 

to the next TSk+1,k+2, then the azimuthal angle increases by 20°. The metal nuclei 

keep the same positions on the rotational axis, for all TSs.     

 

SI VI-F: The coordinates of the boron nuclei of the tubular bearing for 18 

equivalent global transition states of the oriented tubular rotor  

La-[B2@B18]-La 

 

The goal of this Subsection is to provide the cylindrical coordinates of all nuclei 

in all TSs. For this purpose, it is convenient to assign the label “k” to the 

transition state TSk,k+1 (k=1,2,…,18 mod 18, e.g. k=18 for TS18,1). This choice is 

of course somewhat arbitrary: it reminds of the “preceding” GMk, instead of the 

alternative label “k+1” of the “next” GMk+1. We choose the label “k” because it 

allows reaching the goal. The derivation is analogous to that presented in 

Subsection SI VI-C for the cylindrical coordinates of the nuclei in all GMs. In 

particular, it exploits the C2h symmetry rules (40) for the coordinates of the 

reference TS18,1, analogous to the C2h symmetry rules (38) for the coordinates of 

the reference GM1. As result, the cylindrical coordinates of the nuclei of the 
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tubular bearing of TSk,k+1 at the reference angle Φi  are given by the compact and 

general expression  

 

 T18-k+i.i
 
     = (R18-k+i

TS, Φi + ΔΦ18-k+i
TS, (-1)k Z18-k+i

TS)  

                        ≡ (R-k+i
TS,   Φi + ΔΦ-k+i

TS,   (-1)k  Z-k+i
TS)                   (42) 

 

with the subscripts modulo 18, analogous to eqn. (39) for GMk. (The letter “T” 

reminds of “transition state”.) Applications of this rule to all boron nuclei i = 1, 

2, …, 18 in all TSs are listed in Table S2b 

 

It is instructive to consider three examples of the rule (42) for the TSs, which 

correspond to the three applications (a), (b), (c) of the rule (39) to the GMs, as 

discussed in Subsection SI VI-C. (a) Gratifyingly, application of the rule (42) to 

the nuclei i=1,2,…,18 of the reference TS18,1 (k=18) reproduces its cylindrical 

coordinates  Ti,i =  (Ri
TS, Φi + ΔΦi

TS, Zi
TS). (b) and (c): For the nuclei of the tubular 

bearing at the reference angle Φi of the next neighboring transition states TS1,2 

(k=1) and TS2,3 (k=2), the rule (42) yields the coordinates T17+i,i = (R17+i
TS, Φi + 

ΔΦ17+i
TS, - Z17+i

TS) and  (R16+i
TS, Φi + ΔΦ16+i

TS, Z16+i
TS). The related permutations 

gp and gp
2 imply that the labels of the nuclei 1, 2, …, 18 of the “delivering” TS18,1 

are replaced in cyclic manner by (9,10,…,18,1,2,…,8) and by (17,18,1,2,…,16), 

as illustrated in Figure 1 and documented in Table S1. 

 

 

SI VII: The rotating molecular wheel in the pseudo-rotating tubular bearing 

of the oriented rotor La-[B2@B18]-La 

 

Until now, we have considered the generation of eighteen equivalent global 

minimum structures and eighteen equivalent transition states of the oriented La-

[B2@B18]-La, by multiple applications of the generators g or g̃ to the reference 

GM1 or to the reference TS18,1, respectively. The generator g̃  invokes large 

amplitude motions of the individual nuclei of the tubular bearing, associated with 

permutation of the nuclear labels of the molecular wheel. For example, it rotates 

the rotor by 20° + 180° about the cylindrical axis to its new position in the bearing 

of GM2, cf. eqn. (7). In contrast, the generator g invokes small amplitude nuclear 

motions of the bearing, but these are associated with significant permutations of 

the nuclear labels, cf. eqn. (4). For example, it moves the nucleus of the bearing 

of GM1 labeled i=1 from its position at cylindrical coordinates G1,1 to the 

neighboring coordinates G18,1 while permuting its label from 1 to 9, cf. Figure 1 

and Tables S1, S2.  
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This Section introduces an equivalent generator g≈ which achieves the same 

effect as g or g̃, but with small amplitude motions of the nuclei of the bearing, 

and without any permutations of the nuclei. This generator g≈ implies a new 

mechanism for generating the cyclic sequence of alternating global minimum 

structures and transitions states, TS18,1   GM1  TS1,2  GM2 …  TS17,18 

 GM18 TS18,1 of the tubular rotor, namely generation by rotating the 

molecular wheel in the pseudo-rotating tubular bearing. Specifically,  

 

the generator g≈ = { gr, gpr} consists of two operations, namely 

 

 gr: rotation of the molecular wheel in the tubular bearing by 20°,  

 

gr: φ  φ + 20° 

 

(same as gr for the generator g, eqn. (4)) and  

 

 gpr – this denotes the so-called “pseudo-rotation” of the nuclei of the 

bearing. Specifically, the nuclei at the reference angle Φi keep their label 

i, but the coordinates G19-k+i.i
 = (R19-k+i

GM, Φi + ΔΦ19-k+i
GM, (-1)k-1 Z19-k+i

GM) 

in GMk change to the coordinates G19-(k+1)+i.i
 = (R19-(k+1)+i

GM, Φi +  

ΔΦ19-(k+1)+i
GM, (-1)k Z19-(k+1)+i

GM) in GMk+1, cf. eqn. (39) 

  

gpr : G19-k+i,i   G19-(k+1)+i.i for GMk  GMk+1, in particular  

 

gpr  : Gi,i            G17+i,i        for GM1  GM2. 

 

Repeated applications gpr
k of gpr change the coordinates Gi,i in GM1 to  

G19-(k+1)+i,i in GMk+1, 

 

gpr
k  : Gi,i          G19-(k+1)+i,i  for GM1   GMk+1. 

  

Likewise, the coordinates T18-k+I,i
 = (R18-k+i

TS, Φi + ΔΦ18-k+i
TS,  

(-1)k Z18-k+i
TS) in TSk,k+1 change to the coordinates T18-(k+1)+i,i

 
 =  

(R18-(k+1)+i
TS, Φi + ΔΦ18-(k+1)+i

TS, (-1)k+1 Z18-(k+1)+i
TS) in TSk+1,k+2, cf. eqn. 

(42),  

  

gpr : T18-k+i,i   T18-(k+1)+i,i   for TSk,k+1  TSk+1,k+2, in particular 

 

gpr : Ti,i           T17+i,i   for TS18,1  TS1,2. 

 

Repeated applications gpr
k of gpr change the coordinates Ti,i in TS18,1 to  
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T18-k+i,i in TSk,k+1 

 

gpr
m  : Ti,i             T18-k+i,i  for TS18,1   TSk,k+1.                               (43) 

 

The subscripts in eqn. (43) are applied modulo 18. 

 

The equivalence of the generator g≈ and g or g̃ means that they achieve the same 

effects. Thus multiple applications g̃k or gk of g̃ or g transfer the reference GM1 

and TS18,1 into GMk+1 and TSk,k+1, respectively, with corresponding permutations 

of the nuclear labels, and with the associated changes of the nuclear coordinates 

(39) and (42), as listed in Table S2b. For comparison, multiple applications g≈k 

of g≈ transfer the reference GM1 and TS18,1 into the same GMk+1 and TSk,k+1, 

respectively, with the same shifts of the nuclear coordinates, but without any 

nuclear permutations. These effects are equivalent, irrespective of the 

permutations or non-permutations of the nuclear labels of the bearing, because 

the boron nuclei are indistinguishable, i.e. their labels do not matter. What 

matters is that the GMk+1 and TSk+1,k+2 are generated from the reference GM1 and 

from TS18,1 with eighteen boron nuclei at coordinates G19-(k+1)+i,i or T18-(k+1)+i,i in 

the bearing, respectively, irrespective of the nuclear labels. The suppression of 

any permutations of the nuclear labels means that the generator g≈ moves the 

nuclei of the bearing of the reference GM1 such that they stay close to their 

reference angles Φi .  

 

The effects of multiple applications g≈k of g≈ operating on GM1 or TS18,1 are 

illustrated in the rainbow-colored Figures S1 and S2, respectively. For each step 

of the wheel from φk or φk,k+1 to φk+1 or φk+1,k+2, the nuclei at the reference angles 

Φi in the bearing move from their positions at G19-k+i,i or T18-m+n,n to G19-(k+1)+i,i or 

T18-(k+1)+i,i, respectively, without changing the nuclear labels. These nuclear 

motions in the bearing are called “pseudo-rotations”.  

 

 

We shall now discuss some important properties of the model of the rotating 

wheel in the pseudo-rotating bearing. These properties are also documented in  

Figures 2 and S4, and they are confirmed by Table S2b when ignoring the labels 

of the nuclei at the reference angles Φi.  

 

(a) Starting from the reference global minimum GM1 or from the reference 

transition state TS18,1, eighteen applications of the rotational-pseudo-

rotational generator g≈ generate the cyclic sequences GM1  GM2 

 … GM18  GM1 or TS18,1  TS1,2  …  TS17,18  TS18,1, 

respectively. At the same time, the nuclei of the molecular wheel move 
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along a full rotational cycle. The coordinates of the nuclei of the bearing 

at reference angle Φi move according to the cyclic sequences G19-1+i,i  

G19-2+i,i  …  G19-18+i,i  G19-1+i,i  or T18+i,i  T18-1+i,i  …  T18-17+i,i 

 T18+i,i, respectively. The symmetry relations (36) and (40) – which are 

consequences of the C2h symmetries of the reference GM1 and TS18,1 – 

imply that these sequences are periodic, with period 9, i.e.  

 

G19-k+i,i = G19-(k+9)+i,i,   

 

T18-k+i,i = T18-(k+9)+i,i.                                               

 

or 

 

   G19-1+i,i   G19-2+i,i    …  G19-9+i,i    G19-10+i,i 

= G19-10+i,i  G19-11+i,i  …  G19-18+i,i  G19-1+i,i, 

 

   T18+i,i   T18-1+i,i    …  T18-8+i,i    T18-9+i,i 

= T18-9+i,i  T18-10+i,i  …  T18-17+i,i  T18-18+i,i.                              (44) 

 

Each of the cyclic sequences (44) accounts for one pseudo-rotational cycle 

of the nuclei of the bearing. This means that rotation of the molecular 

wheel by half a cycle (and then followed by the second half cycle to 

complete the full cycle) is associated with a full pseudo-rotational cycle 

(and then by the second full pseudo-rotational cycles) of the nuclei of the 

bearing.    

 

(b) The concerted effect of eighteen pseudo-rotating nuclei of the bearing    

appears as if the bearing rotates, even though it does not rotate. This is 

rationalized by the equivalence of the two generators, g≈ and g̃ . The 

property (a) then implies that when the wheel rotates by half a cycle (and 

then by another half cycle to complete the full cycle), the bearing appears 

as if  it rotates by a full cycle (and then by the second full cycle). 

 

(c) The cylindrical coordinates of the nuclei at neighboring reference angles 

Φi and Φi+1 are related to each other,  

 

                     (R19-k+i
GM               , Φi              + ΔΦ19-k+i

GM ,    (-1)k-1    Z19-k+i
GM          ) 

  

                = (R19-(k+1)+(i+1)
GM,  Φi+1 – 20° + ΔΦ19-(k+1)+(i+1)

GM,  

                                                                                            -(-1)k Z19-(k+1)+(i+1)
GM).              
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                   (R18-k+i
TS             , Φi               + ΔΦ18-k+i

TS ,       (-1)k      Z18-k+i
TS            ) 

  

                 =(R18-(k+1)+(i+1)
TS, Φi+1 – 20° + ΔΦ18-(k+1)+(i+1)

TS,     

                                                                                          -(-1)k+1  Z18-(k+1)+(i+1)
TS). 

                                                                                                                     (45)                    

 

            From a mathematical point of view, these relations are trivial. But  

            for the mechanism of the rotating wheel in the pseudo-rotating bearing,  

            they have two consequences (d) and (e) which may appear less obvious: 

 

(d)  The pseudo-rotational sequences of the coordinates of the nuclei of the 

bearing (in brief: “the pseudo-rotational sequences”) at all reference 

angles Φi “look the same”, that means they can be mapped on each other 

by simple symmetry operations. Specifically, the pseudo-rotational 

sequence at Φi can be mapped on the sequence at the neighboring 

reference angle Φi+1 by rotating it about the cylindrical axis by Φi+1 – Φi = 

20°, together with reflection at the x-y-plane. As a consequence, the 

pseudo-rotational sequences at reference angles Φi with odd labels i = 1, 

3, 5, …, 17 are rotated with respect to each other by Φi+2 – Φi = 40°, and 

they are all above the x-y-plane. In contrast, the pseudo-rotational 

sequences at reference angles Φi with even labels i = 2, 4, 6, ..., 18 are 

rotated with respect to those with odd labels i = 1, 3, 5, …, 17 by Φi+1 – 

Φi = 20°, together with the reflections which put them all below the x-y-

plane. 

  

(e) The pseudo-rotational sequences at neighboring reference angles Φi+1 , Φi 

(Δi=1) are phase shifted to each other by Δk=1.  

 

(f) An alternative version of writing eqn. (45) is 

                     (R19-k+1
GM           , Φi                   + ΔΦ19-k+1

GM,                (-1)k+1 Z19-k+1
GM ) 

  

                = (R19-(k+i-1)+i
GM , Φi+1 – 20° + ΔΦ19-(k+i-1)+i

GM ,     

                                                                                     (-1)i-1 (-1)k+i Z19-(k+i-1)+i
GM).              

 

                   (R18-k+1
TS           , Φi                 +   ΔΦ18-k+1

TS  ,               (-1)k  Z18-k+1
TS          )  

      = (R18-(k+i-1)+i
TS, Φi+1 – 20° + ΔΦ18-(k+i-1)+i

TS  ,  

                                                                        (-1)i-1 (-1)k+i-1  Z18-(k+i-1)+i
TS). 

                                                                                                              (46)                    
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Again, this is mathematically trivial, but it has important consequences, 

namely it suffices to know the pseudo-rotational sequence of the 

cylindrical coordinates of the nucleus at reference angle Φi=1 = 10°. The 

corresponding sequences at reference angle Φi can then be generated by 

rotating them from Φi=1 to Φi, with phase shifts by i-1 and with reflection 

at the x-y-plane for even numbers i. In practice, it thus suffices to know 

the pseudo-rotational sequence of the cylindrical coordinates of the 

nucleus at reference angle Φi=1 = 10° - the coordinates at all other 

reference angle Φi can then be generated by means of the recipe (46).  

 

(g) One can combine the pseudo-rotational sequences for the global minimum 

structures and for the transition states according to the cyclic sequence 

with alternating TSk,k+1 and GMk, 

 

TS18,1   GM1  TS1,2  GM2  …..  GM17  TS17,18 GM18 

                                                                                                                                                        TS18,1. 

                                                                                                            (47a) 

 

This sequence is illustrated in Figures 2 and S4 which appears as a 

superposition of Figure S1 for the GMs and Figure S2 or the TSs. The 

cyclic sequence of the corresponding labels k (modulo 18) of TSk,k+1 and 

GMk is 

 

k =18(TS)1(GM)1(TS)2(GM)….. 

                                                   17(GM)17(TS)18(GM)18(TS) 

                                                                                                            (47b) 

 

It is convenient to map this cyclic sequence with “twins” of labels k to the 

cyclic sequence with “single” labels j (modulo 36) 

 

j = 0   1  2     3        ……   33    34     35       36 (≡0) 

                                                                                                            (47c)  

 

 

The corresponding sequence of the azimuthal angle of the molecular 

wheel with respect to the oriented bearing is  

 

φj [°] = 0  10  20     30    ...   330  340      350   360≡0 

                                                                                                            (47d) 
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            i.e. φj = j * Δφ, Δφ = 360°/36 = 10°. 

 

The general expressions for the coordinates R19-k+i,i (eqn. (39)) and T18-k+i,i 

(eqn. (42))  for the nucleus in the bearing of La-[B2@B18]-La at reference 

angle Φi = 10°, 30°,50°,…,350° (i=1,2,3,…,18) yield the corresponding 

cyclic pseudo-rotational sequence of cylindrical coordinates   

 

       Ti,i   Gi,i  T17+i,i   G17+i,i ….   G2+i,i   T1+i,i  G1+i,i  Ti,i         

                                                                                                            (47e) 

 

          In the explicit expressions (39) and (42), the cylindrical reference 

          coordinates for the nuclei of the reference GM1 and TS18,1 can no be re- 

          labeled by the single label j instead of the previous subscript k and 

          superscripts GM or TS. For example, the corresponding cyclic reference 

          sequence of the cylindrical radii  

 

     Rk=18
TS    R1

GM  R1
TS  R2

GM  …  R17
GM 
 R17

TS  R18
GM 

                                                                                                                                                           R18
TS   

                                                                                                                        (47f) 

          is then replaced by 

 

               Rj=0          R1      R2     R3    …   R33     R34
    
 R35   

                                                                                                                    R36≡0   
                                                                                                            (47g) 

 

Likewise, the cyclic reference sequence of azimuthal deviations 

 

ΔΦk=18
TS 
 ΔΦ1

GM 
 ΔΦ1

TS  ΔΦ2
GM 
 … ΔΦ17

GM 
 ΔΦ17

TS 
 

                                                                                     ΔΦ18
GM 
 ΔΦ18

TS   

                                                                                                            (47h) 

 

is replaced by 

 

 ΔΦj=0   
  
   ΔΦ1      ΔΦ2   ΔΦ3

  
 …..   ΔΦ33  ΔΦ34  ΔΦ35  

                                                                                                         ΔΦ36≡0,   

                                                                                                             (47i) 

 

and the cyclic reference sequence of Z-coordinates 

 

     Zk=18
TS   Z1

GM  Z1
TS  Z2

GM  …  Z17
GM 
 Z17

TS  Z18
GM 

                                                                                                                                                           Z18
TS   
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                                                                                                                        (47j) 

           is replaced by 

 

                Zj=0        Z1     Z2      Z3     …   Z33
    
 Z34    Z35  

                                                                                                                      Z36≡0.   
                                                                                                            (47k) 

 

An explicit list of the cylindrical reference coordinates (47g), (47i), (47k) 

depending on the azimuthal angle φj (47d) is presented in Table S2a.  

 

(h)  The previous symmetry relations (36) and (40) which depend on the C2h 

symmetry of the reference GM1 and TS18,1 give rise to the following 

symmetry relations for the cylindrical coordinates labeled by the joint 

index j: 

 

R1+λ = R1-λ = R19+λ = R19-λ 

 

ΔΦ1+λ = - ΔΦ1-λ = ΔΦ19+λ = -ΔΦ19-λ 

 

Z1+λ = (-1)λ Z1-λ = - Z19+λ = - (-1)λ Z19-λ, λ = 0,1,2,...                        (48) 

 

These rules are valid modulo (36). They can be verified by inspection of 

Table S2a.  

   

(i) Using the joint index j = 0, 1, 2, 3, 4, … for the alternating TS and GM 

structures at the azimuthal angles φj = j*10° of the wheel (B2) with respect 

to the oriented bearing (B18) of the tubular rotor La-[B2@B18]-La, the rules 

(39), (42) and (43) for the pseudo-rotational coordinates of the nucleus of 

the bearing at the reference angle Φi=1 = 10° are translated into the pseudo-

rotational sequence  

 

(R2, ΔΦ2, Z2)  (R1, ΔΦ1, Z1)  (R0≡36, ΔΦ0≡36, - Z0≡36)   

         (R35, ΔΦ35, - Z35)  (R34, ΔΦ34, Z34)  ….  

 

= (R0, -ΔΦ0, -Z0)  (R1, -ΔΦ1, Z1)  (R2, -ΔΦ2, Z2)  (R3, -ΔΦ3, - Z3) 

           (R4, -ΔΦ4, -Z4)  ….  

 

= (R0, -ΔΦ0, |Z0|)  (R1, -ΔΦ1, |Z1|)  (R2, -ΔΦ2, |Z2|)   

        (R3, -ΔΦ3, |Z3|)  (R4, -ΔΦ4, |Z4|)  ….  

 

≡ (Rj, - ΔΦj, |Zj|)  , j = 0, 1, 2, 3, …, 35, (36 ≡0).                             (49)                                                  
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The first equation (49) is a consequence of the symmetry rules (36), (40). 

The minus sign in front of the deviations -ΔΦj is in accord with the fact 

that the pseudo-rotation and the rotation of the wheel are both anti-

clockwise. The second equation (49) is verified by inspection of Table 

S2b. It ensures that all positions of the nucleus at the reference angle Φ1 = 

10° are above the x-y-plane. According to the rule (47f), it suffices to 

know the pseudo-rotational sequence (49) at Φ1 = 10°. All other  

pseudo-rotational sequences at reference angles Φi can be generated from 

the rule (49) by application of the “trivial” eqn. (46) - in practice this 

means by rotation by Φi – Φ1 together with alternating reflections at the 

x-y-plane. This yields the sequence (47e) of the coordinates of the nuclei 

of the bearing at Φi = 10°, 30°, 50°, …, 350°. The result is shown in 

Figures 2 and S1.  

 

Figures 6a, 6b show the cyclic reference sequences of the cylindrical 

coordinates Rj, -ΔΦj for the nucleus of the bearing at the reference angle 

Φ1 = 10 ° versus the azimuthal angles φj of the molecular wheel. Figure 

6c adds the cyclic sequence of the related reference Cartesian coordinates, 

 

(Xj = Rj cos(-ΔΦj),   Yj = Rj sin(-ΔΦj), |Zj|), j=1,2,…,36, (37≡1). 

                                                                                                              (50) 

 

 

Three-dimensional (3d) perspective views of selected pseudo-rotational 

paths are illustrated in the inserts of Figure S4a. Figure 8a shows the 

corresponding 2d projection (Xj, Yj).  

 

 

From the sequence of the pseudo-rotational cylindrical coordinates (Rj, -

ΔΦj, |Zj|) of the nucleus of the bearing at the reference angle Φi=1 which 

are shown in Figures S6 and S7 one can generate the corresponding 

coordinates at the reference angles Φi, i=1, 2, …, 18 as explained in item 

f above, cf. eqn. (46). The result is shown in Figure S4a. 

 

The corresponding cyclic sequence of the cylindrical coordinates of the two 

boron nuclei of the wheel (j=19,20) depend on φj, as follows: Their values of the 

radii alternate between the values for GM and TS,   

 

R19(φj) = R20(φj) = R19
GM = 0.8177 Å for j = 1, 3, 5, …., 33, 35 and  
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 R19(φj) = R20(φj) = R19
TS = 0.8182 Å for j =2, 4, 6, …, 34, 36. 

 

The azimuthal angles (modulo 360°) are   

 

Φ19(φj) =φj = j*Δφ, Δφ = 10°, and Φ20(φj) = Φ19(φj) + 180°. 

 

The Z-components are  

 

Z19(φj) = - Z20(φj) = (-1)(j-1)/2 Z19
GM = -(-1)(j-1)/2 0.0177 Å  

                                                     for j =1, 3, 5, …., 33, 35 and 

 

Z19(φj) = - Z20(φj) = Z19
TS   = 0 Å for j = 2, 4, 6, …, 34, 36.                 (51) 

 

Figures 2, S4 show the corresponding rotating molecular wheel in the pseudo-

rotating bearing of the tubular rotor La-[B2@B18]-La, for the first half cycle of 

the wheel (0° ≤ φj ≤ 180°, 0 ≤ j ≤ 18) and the simultaneous first phase-shifted 

full cycles of the nuclei of the bearing. One readily notices that the pseudo-

rotational sequences can be subdivided into four “radial events” (a), (b), (c), (d). 

For convenience, these events will be described for the pseudo-rotational 

sequence of the nucleus at reference angle Φ1 = 10°, cf. eqn. (49); the 

corresponding radii Rj(φj) are listed in Table S2a, and they are also obvious in 

Figures S6a and S7a. (a) Namely for most of the time, specifically when the 

azimuthal angle of the wheel φj is between 0° and approximately 70° (j = 0 – 7, 

i = 18,1 – 4, cf. eqn. (47b), (47c)) and then again between about 130° and 180° 

(j = 13 – 18, i = 7 - 9), the nucleus at  Φ1 = 10° stays on an “inner circle” with 

radial values Rj(φj) ≈ 2.3 Å. (b) Then at φj ≈ 80° (j = 8, i(TS) = 4) it switches 

rather quickly from the inner circle to the outer one, at Rj(φj) ≈ 2.6 Å. (c) It stays 

on the “outer circle” for just a rather short time, specifically for 90° <≈ φj  <≈ 110° 

( j = 9-11, i = 5-6). (d) Finally, at φj ≈ 120° (j = 12, i(TS) = 6) it switches back 

from the outer circle to the inner one. Equivalent events occur for all nuclei of 

the bearing at the other reference angles Φi, but they are phase-shifted with 

respect to the equivalent switches at Φi-1. The preference of the rather extended 

“inner” radial circle may be rationalized as consequence of the attractive bonds 

of the atoms of the wheel and several neighbor atoms which sit near to the short 

ellipsoidal axis of the bearing. In contrast, the rather short “outer” radial circle is 

due to the lack of any bonds between the atoms of the wheel and those atoms of 

the bearing which sit in orthogonal positions, near to the long ellipsoidal axis of 

the bearing.   

  

Finally, the cyclic sequences of the nuclear cylindrical coordinates of the two 

metal nuclei (i=21,22) are  
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R21(φj) = R22(φj) = 0 Å for j =1, 2, 3, 4, ….,35, 36, 

 

Φ21(φj) = Φ22(φj) = 0° for j =1, 2, 3, 4, ….,35, 36, 

    

     (the value “0°” is arbitrary and irrelevant.) 

 

Z21(φj) = - Z22(φj) = Z21
GM = 2.3981 Å for j = 1, 3, 5, …, 33, 35, 

 

Z21(φj) = - Z22(φj) = Z21
TS = 2.3916 Å for j = 2, 4, 6, …, 34, 36.         (52) 

 

One may say that the metal nuclei are “spectators” of the rotating molecular 

wheel in the pseudo-rotating tubular bearing: They just stay at opposite positions 

of the cylindrical axis, with entirely negligible motions along the z-axis.  
 

SI VIII: Rotational and pseudo-rotational paths of the nuclei of the oriented 

tubular rotor La-[B2@B18]-La  

  

This investigation of the oriented tubular rotor La-[B2@B18]-La has started from 

the cyclic sequence which leads from the reference global minimum structure 

GM1 via the transition state TS1,2 and then via GM2, TS2,3, GM3, …, TS17,18, 

GM18, to the reference transition state TS18,1, and finally back to GM1, cf. 

Subsections SI I and SI II and eqn. (47). Subsequently, Subsection SI VII has 

shown that this is equivalent to an alternative sequence for the mechanism of the 

rotating molecular wheel (B2) in the oriented pseudo-rotating tubular bearing 

(B18). Specifically, the wheel rotates in 36 cyclic steps, from azimuthal angle φj=1 

= 10° via φ2 = 20°, φ3 =30°, …, φ35 = 350°, φ36 = 360° ≡ 0°, and finally back to 

φ37 ≡ φ1 = 370° ≡ 10°, labeled by j = 1, 2, 3, …, 34, 35, 36 and 37(≡1, modulo 

36), respectively. At the same time, the eighteen boron nuclei of the tubular 

bearing at the reference angles Φi = 10°, 30°, …., 350° pseudo-rotate along 36 

positions on pseudo-rotational paths, with the same labels j = 1, 2, 3, …, 35, 36, 

and 37 ≡ 1 (modulo 36), respectively. The pseudo-rotational positions for j = 1, 

2, …, 18 are the same as for j = 19, 20, …, 36, i. e. when the wheel rotates by a 

full cycle, then the nuclei of the bearing perform two pseudo-rotational cycles. It 

suffices to know the pseudo-rotational sequence of the boron nucleus at Φ1 = 10° 

- from this, the pseudo-rotational sequences of the nuclei at the other reference 

angles Φ2 = 30°, Φ3 = 50° etc. can be generated by simple recipes, cf. eqns. (45), 

(46). At the same time, the metal nuclei stand practically still, except for 

extremely small amplitude vibrations in opposite directions along the z-axis.     
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The goal of this Sub-section SI VIII is to extend the 36 sets of rotational and 

pseudo-rotational positions of the nuclei of the tubular rotor La-[B2@B18]-La 

labeled by j=1,2, …., 36, 37≡1 by a set of 18+2+2=22 continuous paths which 

lead through, or close to the coordinates for the pseudo-rotational sequences of 

the nuclei of the bearing, through the coordinates for the rotational sequences of 

the nuclei of the wheel, and for the metal nuclei. This set of paths will be called 

the “rotational/pseudo-rotational path” of the tubular rotor. Its construction is 

divided into three parts, namely first for the pseudo-rotating nuclei of the bearing, 

second for the rotating nuclei of the wheel, and third for the metal nuclei.  

 

For the first task, it suffices to construct the pseudo-rotational path which leads 

through, or close to the coordinates of the pseudo-rotational sequence of the 

boron nucleus of the bearing at the reference angle Φi=1 = 10°. The remaining 

pseudo-rotational paths for the nuclei of the bearing at the other reference angles 

Φi, i = 2, 3, …, 18 can be generated by rotations of the “first” path by i*20°, with 

alternating reflections at the x-y-plane and with phase shifts, in accord with eqns. 

(45), (46).  

 

To construct the pseudo-rotational path of the nucleus of the oriented tubular 

bearing of La-[B2@B18]-La at Φi=1 = 10°, the sequence of 36 pseudo-rotational 

positions with cylindrical coordinates {Rj(φj),  -ΔΦj(φj), |Zj(φj)|}, j=1,2,…,36 

(discarding those for j=0 because they are equivalent to j=36) should be extended 

to corresponding continuous functions depending on the azimuthal angle φ of the 

wheel, subsect to two criteria: (a) They should be in accord with the symmetries 

(48) of the discrete sequences {Rj(φj), -ΔΦj(φj), |Zj|(φj)} which are imposed by 

the C2h symmetries of the reference TS18,1 and the reference GM1. (b) For φ  

φj, the continuous functions should approach the discrete values of the 

coordinates, {Rj(φj), -ΔΦj(φj), |Zj|(φj)}. A solution of this problem is suggested 

by Figure S7a which shows the discrete coordinates of the nucleus of the bearing 

at Φ1 = 10 after back-rotation from φj by Φ1 = 10° to ϕj = φj - 10°. Accordingly, 

the two criteria are satisfied by (a) corresponding representations of the 

continuous functions by symmetry-adapted Fourier series depending on ϕj = φj - 

10°, and (b) by least squares fits of the Fourier series to the discrete coordinates 

at the pseudo-rotational nuclear positions labeled j = 1, 2, …, 36. Specifically, 

we define 

 

(a) Rj(φj) = R(φj - 10°) = R(ϕj)                                                             (53a) 

 

together with the symmetry adapted Fourier series 

  

RM(ϕ) = Σμ=0
M c(R)

μ cos(2 μ ϕ)                                                         (53b) 
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          of order M, with radial Fourier coefficients c(R)
μ such that    

  

                RM(ϕj)  Rj(φj) for increasing values of M.                                            (53c) 

 

           Likewise 

  

 -ΔΦj(φj) = -ΔΦ(φj - 10°) = -ΔΦ(ϕj)                                                   (54a) 

 

together with the symmetry adapted Fourier series 

  

-ΔΦM(ϕ) = Σμ=1
M c(ΔΦ)

μ sin(2 μ ϕ)                                                      (54b) 

 

          of order M, with angular Fourier coefficients c(ΔΦ)
μ such that    

  

                -ΔΦM(ϕj)  -ΔΦj(φj) for increasing values of M,                                     (54c) 

 

               as well as  

 

|Zj|(φj) = |Z|(φj - 10°) = |Z|(ϕj)                                                             (55a) 

 

together with the symmetry adapted Fourier series 

  

|ZM|(ϕ) = Σμ=0
M c(Z)

μ cos (2 μ ϕ)                                                          (55b) 

 

          of order M, with Fourier coefficients c(Z)
μ for |Z| such that    

  

                |ZM|(ϕj)  |Zj| (φj) for increasing values of M.                                          (55c) 

 

The Fourier coefficients in the expressions (53b), (54b), (55b) are determined by 

least squares fits such that  

 

(b)  Σj=1
36 [Rj(φj) – RM(φj - 10°)]2  = minimum                                         (53d) 

 

Σj=1
36 [ΔΦj(φj) – ΔΦM(φj - 10°)]2  = minimum                                    (54d) 

 

Σj=1
36 [|Zj|(φj) - |ZM|(φj - 10°)]2  = minimum                                        (55d) 

 

By construction, the Fourier series (53b), (54b), (55b) satisfy the symmetry 

relations (48). The corresponding factor “2” in the argument of the cos- and sin-
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functions accounts for two cycles along the pseudo-rotational path during a 

single cycle of the molecular wheel in the oriented tubular bearing. 

  

The Fourier series (53b), (54b), (55b) serve as approximations to the ideal set of 

continuous functions {R(φ - 10°), -ΔΦ(φ - 10°), |Z|(φ - 10°)}, depending on the 

number M+1 (or M) of Fourier coefficients. In practice, the choice of M calls for 

a compromise: On the one hand, increasing numbers M allow the continuous 

functions to approach the discrete values better and better, cf. eqns. (53c), (54c), 

(55c). On the other hand, increasing numbers M cause artificial wiggles of the 

smooth functions. Systematic investigations reveal that M = 8 is a satisfactory 

compromise. The corresponding Fourier coefficients are 

 

c(R)
μ (Å) = 2.349, -0.114, 0.134, -0.058, 0.023, -0.003, -0.016, 0.006, -0.008  

                 for  μ = 0 – 8,                                                                               (53e) 

 

c(ΔΦ)
μ (°) = -1.568, 0.306, -0.048, -0.424, -0.203, -0.066, 0.000, 0.008 

                  for  μ = 1 – 8,                                                                               (54e) 

 

c(Z)
μ   (Å) = 0.788, 0.056, 0.005, 0.028, -0.023, 0.016, 0.001, -0.002, 0.003                                                                                

                   for  μ = 0 – 8.                                                                              (55e) 

 

 

These Fourier coefficients are robust with respect to their numbers M+1 (or M).  

  

The resulting functions {RM=8(φ - 10°), -ΔΦM=8(φ - 10°), |Z|M=8(φ - 10°)} are 

documented in Figure S6 and S7a. They establish the pseudo-rotational path of 

the nucleus of the bearing at the reference angle Φi=1 = 10°, back-rotated by - 10°. 

The corresponding paths of the nuclei of the bearing centered at Φi, i = 2, 3, …, 

18 are generated by forward rotation by 10° for i=1, and then by sequential steps 

of ΔΦ = 20°, with alternating reflections at the x-y-plane, in accord with the 

previous recipe SI VII(f), cf. eqn. (46). The result is shown in Figures 2 and S4a.  

 

The second and third tasks of this Subsection are rather easy, compared to the 

first one. Namely the rotational paths of the two nuclei (n=19,20) of the 

molecular wheel are nearly circular. The explicit expressions are  

 

R19(φ) = R20(φ) = Rw + ΔRw cos(18φ), 

                           Rw = .5(R19
GM + R19

TS) = 0.81795 Å, 

                          ΔRw = .5(R19
TS -  R19

GM) = 0.00025 Å, 

 

Φ19(φ) = φ,    Φ20(φ) = φ + 180°,  
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Z19(φ) = - Z20(φ) = Z19
GM sin(9φ), Z19

GM = -0.0177 Å,                                (56) 

 

cf. eqn. (51). The associated paths of the metal nuclei are along the Z-axis, 

 

R21(φ) = R22(φ) = 0 Å, 

 

Φ21(φ) = Φ22(φ) = 0°, 

 

Z21(φ) = -Z22(φ) = Zm + ΔZm cos(18φ), 

                           Zm = .5(Z21
GM + Z21

TS) = 2.39485 Å, 

                          ΔZm = .5(Z21
TS - Z21

GM) = -0.00325 Å, 

                                                                                                                    (57) 

 

cf. eqn. (52), i. e. the two metal nuclei serve as spectators which are practically 

fixed at the cylindrical axis, except for tiny modulations.  

 

SI IX: Support of the model of the rotating molecular wheel in the pseudo-

rotating bearing by vector arrow plots of two selected normal modes of  

La-[B2@B18]-La 

 
Subsection SI VII reveals the oriented model La-[B2@B18]-La as tubular rotor 

with molecular wheel (B2) rotating in the pseudo-rotating tubular bearing (B18). 

To support this picture, we shall now add information about the directions of the 

nuclear motions which lead along these sequences. For this purpose, we shall 

first consider the nuclear motions which are directed from the reference transition 

state TS18,1 to the neighboring reference global minimum structure GM1. The 

results will be extrapolated to the nuclear motions from the other TSk,k+1 to the 

neighboring GMk+1. By analogy, we shall also consider the nuclear motions 

which are directed (approximately) from GM1 to the next neighboring TS1,2. This 

will be extrapolated to the nuclear motions from the other GMk to the next 

neighboring TSk,k+1. The presentation and analyses below are rather detailed for 

the nuclear motions from the TSs to the GMs and more compact for the 

analogous motions from the GMs to the TSs. Finally, we shall arrive at a set of 

nuclear motions which are directed along the pseudo-rotational sequence (47). 

 

In general, the nuclear motions which lead across a transition state toward the 

next global minimum structure are specified by the transition state’s normal 

mode with imaginary frequency. In the present reference case of TS18,1, these 

motions are illustrated by the vector arrow plot of the normal mode with 

imaginary frequency (|ℏωi
TS| = 217.90 h c cm-1, IRREP bg), cf. Figure S3b. The 
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vectors at nucleus i of the reference TS18,1 will be denoted by Cartesian 

coordinates, ΔQi
TS = (ΔXi

TS, ΔYi
TS, ΔZi

TS). They are plotted with finite lengths 

and arbitrary scaling, and with their tails attached to the positions of nucleus i, 

as specified in Subsection SI II and in Table S2a. The finite vectors ΔQi
TS are 

proportional to infinitesimally small vectors, ΔQi
TS ~ dQi

TS, which cannot be 

illustrated. The advantage of using finite vectors ΔQi
TS for illustrations is that 

they show the directions of the dQi
TS, and they also illustrate the relative lengths 

of the dQi
TS for the different nuclei. In a classical picture, the dQi

TS are 

proportional to the nuclear velocities dQi
TS/dt. With proper scaling of the time 

interval Δt, one may set dQi
TS/dt = ΔQi

TS/Δt. That means that the classical 

nuclear velocities are along the directions of the vectors ΔQi
TS, and “long” and 

“short” vectors ΔQi
TS correspond to “fast” and “slow” classical velocities. One 

may define a semiclassical normalization of the vectors and the related time 

interval Δt, (somewhat arbitrarily, of course) by setting the related classical 

nuclear kinetic energies equal to the quantum energy of the local bg mode with 

imaginary frequency, .5(|ℏωi
TS|  = .5 Σi’ mi’ (dQi’

TS/dt)2 = .5 Σi’ mi’ (ΔQi’
TS/Δt)2.  

 

Close inspection of the vector arrows ΔQi
TS of the bg mode with imaginary 

frequency for the reference TS18,1 in Figure S3b reveals that there are just four 

prominent nuclei of the bearing which move rather rapidly, all with the same 

speed, namely the quadruplet of nuclei labeled i(TS) = 4, 6, 13, 15; according to 

eqn. (47) (cf. Table S2a and Figure 7a), these correlate with labels j = 8, 12, 26, 

30, respectively. Their directions are in accord with IRREP bg; in particular, the 

vector arrows for nucleus 4 and the opposite nucleus 13 point toward decreasing 

radii, whereas the vector arrows for nucleus 6 and the opposite nucleus 15 point 

to increasing radii. In contrast, all other nuclei of the bearing move rather slowly. 

At the end of this Subsection, this curious result will provide a nice confirmation 

of the scenario of the rotating wheel in the pseudo-rotating tubular bearing. As 

first hint to this end, we notice that the two labels i(TS) = 15 and 13 of the nuclei 

which move rapidly towards larger and smaller radii, correlate with the second 

“radial event” (b) at φj=8 = φk,k+1=4,5 (j=8, k(TS)=4) and with the forth one (d) at 

φj=12 = φk,k+1=6,7 (j=12, k(TS)=6) which have been diagnosed towards the end of 

the Sub-section SI VII, namely (b) the rapid transitions from the “inner radial 

circle” to the “outer” one, (d) and back, during the first pseudo-rotational 

sequence i.e. during the first half cycle of the wheel. Specifically, when the wheel 

moves from φk,k+1=18,1 = 0° via φ1,2, φ2,3, φ3,4 to φ4,5 and then via φ5,6 to φ6,7, then 

the labels of the nuclei of the bearing which sit at the reference site at Φi=1 = 10° 

vary from the initial i=1 via 18, 17, 16 to 15 (sic!) and then via 14 to 13 (sic! ), 

respectively. Thus as long as the wheel moves from φ = φk,k+1=18,1 = 0° to φ3,4 = 

70°, the radius of nucleus i=1 of the bearing at Φi=1 = 10° remains at the “inner 

circle, Rk
TS ≈ 2.3 Å, corresponding to the “radial event (a)”. When the wheel 
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arrives at φ4,5 = 80° and subsequently at φ6,7 = 120°, then the nucleus at Φi=1 = 

10° moves rapidly from the “inner radial circle” to the “outer” one (Rk=5
TS ≈ 2.6Å) 

(event (b)), and back (event (d)), respectively. The opposite nuclei 6 and 4 take 

the same roles during the second pseudo-rotational sequence i. e. during the 

second half cycle of the wheel.  

 

As expected for the motion from TS18,1 (φj=1 = φk,k+1=18,1 = 0°) to GM1 (φj=2 = φk=1 

= 10°), the vector arrows at the two nuclei of the wheel (i=19,20) point to (anti-

clockwise) rotation of the wheel with respect to the bearing. These vectors at the 

wheel are shorter than the prominent ones at the nuclei of the bearing (i(TS) = 4, 

6, 13, 15), i. e. the pseudo-rotational speed of the boron nuclei during the 

transitions from short to long radii, and back (events (b) and (d)) is even higher 

than the speed of the rotating nuclei of the wheel. For comparison, the metal 

nuclei stand practically still - this confirms their role as “spectators” sitting on 

the cylindrical axis of the tubular rotor La-[B2@B18]-La. 

 

Starting from the nuclear motions which lead from the reference TS18,1 to the 

reference GM1, as illustrated in Figure S3b, it is straightforward to generate the 

corresponding vector arrow plots of the nuclear motions which point from 

arbitrary TSk,k+1 to the next GMk+1, namely by k-fold applications gk , g̃k or g≈k 

of one of the three equivalent generators g, g̃ or g≈ which have been introduced 

in Sub-sections SI I and SI VII. For convenience, we shall employ g̃k for the 

generation, and g≈k for the analysis. From a mathematical perspective, we recall 

that the set of operators {�̃�~, g̃, g̃2, …, g̃17} establishes the cyclic group �̃�18(M) 

which can be applied to any molecular structure, cf. Sub-section SI I. It can be 

applied, therefore, not only to the original TS18,1, as done above, but also to a 

modified version of TS18,1 with the nuclear positions shifted by infinitesimal or 

by finite displacements dQn
TS and ΔQn

TS. That means it can be applied to the 

tails and to the heads of the vector arrows, with the tails fixed at the nuclear 

positions of TS18,1, or in other words it can be applied to the set of vector arrows 

which are shown in Figure S3b. 

 

Applications of g̃, g̃2, …, g̃8 to the vector arrows shown in Figure S3b for the bg 

mode with imaginary frequency of the reference TS18,1 generate the vector arrow 

plots of the corresponding bg modes of TS1,2, TS2,3, …., TS8,9. The superposition 

of these vector arrow plots is shown in Figure S3c. Accordingly, these transition 

states are crossed sequentially during the first half cycle of the wheel, and at the 

same time during the first full pseudo-rotational cycle of the bearing. Indeed, the 

vector arrows attached to the two nuclei of the wheel support the picture of the 

half-cycle rotation of the wheel. Likewise, the arrows attached to the eighteen 

nuclei of the bearing support the picture of a full cycle of pseudo-rotation, with 
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the corresponding four “radial events” (a)-(d). In contrast, the metal nuclei stand 

practically still as spectators on the nuclear axis. Equivalent results are obtained 

for the second half rotational cycle of the wheel and for the simultaneous second 

full pseudo-rotational cycle of the bearing. In any case, by construction all the 

corresponding nuclear motions are directed from the TSs to the next GMs beyond 

the reference GM1, specifically to GM2, GM3, …, GM9.  

 

For the analysis of the results shown in Figure S3c it is convenient to switch from 

the generator g̃  to g≈ and to consider a magnification of the corresponding 

pseudo-rotational sequence of the vectors which are attached to the positions of 

the nucleus of the bearing at the reference angle Φi=1 = 10°. The magnification is 

illustrated in Figure S7b where it is back-rotated by -Φn=1 = -10° such that it 

appears as centered at 0° - this back-rotation allows an illuminating comparison 

with the pseudo-rotational sequence of positions shown in Figure S7a. 

Apparently, the arrows attached to the nuclear positions for the transition states 

point toward the positions of the next neighbouring global minimum structures. 

Obviously, the arrow plots shown in Figures S3c and S7b support the picture of 

the rotating wheel in the pseudo-rotating bearing. 

 

Next we seek for the analogous vector arrow plot of a normal mode of the 

reference global minimum structure GM1 with the nuclear motions directed from 

GM1 to the next neighboring TS1,2. There is, however, no rigorous rule for the 

choice of the suitable mode of GM1; in fact, it is not even guaranteed that such 

normal mode exists – hence we should anticipate that whatever choice we make, 

the nuclear arrows may not point directly to the next TS1,2, but just approximately. 

In practice, we apply three criteria for the proper choice of the normal mode of 

GM1 which should point (approximately) to TS1,2. The first criterion is a rigorous 

one i. e. the normal mode must have IRREP bg of the local C2h symmetry of GM1, 

because this is the only IRREP which allows the vector arrows for the two nuclei 

of the molecular wheel to be directed toward rotation. The second criterion is 

empirical, i. e. we request that the vibrational frequency of the bg mode of GM1 

should be close to the absolute value of the imaginary frequency mode of the 

reference TS18,1 (|ℏωi
GM| = 217.90 h c cm-1). This criterion ensures that the 

resulting model potential V(φ) for the rotating wheel in the pseudo-rotating 

bearing is approximately cosinusoidal, cf. Figure 3 and S5; alternative choices 

with extremely low or high bg mode frequencies at GM1 compared to TS18,1 

would imply model potentials with sharp peaks at the potential minima or at the 

potential barriers – this would appear as unrealistic. Figure S3a shows that this 

second criterion suggests the bg mode labeled vGM =8 (ℏω8
GM = 234.79 h c cm-

1).  The third criterion is again empirical, i. e. we request that the chosen bg mode 

of GM1 must not direct the nuclear motions entirely away from TS1,2. For this 



58 
 

criterion, we have also checked the two bg modes of GM1 with the next higher 

or the next lower frequencies, compared to vGM = 8. It turns out that the next 

higher frequency bg mode labeled vGM =13 (ℏω13
GM = 342.89 h c cm-1) kicks the 

two metal nuclei away from the cylindrical axis – this is inacceptable. The next 

lower frequency bg mode labeled vGM =2 (ℏω2
GM = 156.58 h c cm-1) points away 

from TS1,2 – this is again inacceptable. For our purpose we choose, therefore, the 

bg mode labeled vGM =8 (ℏω8
GM = 234.79 h c cm-1). Its vector arrow plot is shown 

in Figure S3b.  

 

After the detailed discussion of the vector arrow plot of the bg mode of the 

reference TS18,1 shown in Figure S3b, one immediately recognizes that the 

chosen bg mode of the reference GM1 displays a similar pattern. Accordingly, 

the vector arrows at the nuclei of the wheel (i=19,20) point to (anti-clockwise) 

rotation of the wheel, and there are just four prominent nuclei of the bearing 

which move rather quickly, namely those labeled i(GM) = 4, 7, 13, 16. According 

to eqn. (47), these labels correlate with j = 7, 13, 25, 31, respectively. All other 

boron nuclei move rather slowly, and the metal “spectators” stand practically still. 

For more quantitative comparison, let us recall that the chosen bg mode of the 

reference TS18,1 has analogous four nuclei of the bearing which promote rapid 

pseudo-rotation, namely those labeled i(TS) = 4, 6, 13, 15, correlating with j = 8, 

12, 26, 30, cf. eqn. (47). Obviously, the quadruplets of labels j for the chosen bg 

modes of GM1 and TS18,1 are next neighbors to each other. This implies that the 

mechanism of the pseudo-rotation with four “radial events” – (a) rather long 

circulation at small radii Rj ≈ 2.3 Å, (b) rapid transition from small to large radii, 

(c) short circulation at large radii Rj ≈ 2.6 Å, (d) back-transition to small radii Rj 

≈ 2.3 Å, -  which has been diagnosed in Subsection SI VII, is confirmed not only 

by the nuclear motions of TS18,1 and the TSk,k+1 which are generated from TS18,1, 

but also by those of GM1 and the GMk which are generated from GM1. In contrast 

with the prominent four arrows for the pseudo-rotation of the bearing of TS18,1 

which are larger than the two arrows for the rotation of the wheel, the prominent 

four arrows for the pseudo-rotation of the bearing of GM1 are, however, smaller 

than those for the rotation of the wheel. This suggests that the events (b) and (d) 

occur with highest speed when the molecular wheel has moved from φj=1 = 0 for 

TS18,1 to azimuthal angles φj = 80°, 120°, 260°, 300° for transitions states, (j = 8, 

12, 26, 30), whereas the neighboring angles 70°, 130°, 250°, 310° for global 

minimum structures (j = 7, 13, 25, 31) mark the related on- or off-sets of the 

events (b) and (d).   

 

Starting from the chosen bg mode of the reference GM1 (Figure S3b), one can 

generate and analyze the bg modes of the sequence of the other GM2, GM3, …, 

GM18 in the same way as shown above for the transition states, i. e. by 
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applications of g̃, g̃2, …, g̃17 for generation and g≈, g≈2, …, g≈17 for analysis. The 

resulting superposition of the first nine vector arrow plots for the bg modes of 

GM1 – GM9 is documented in Figure S3c, together with the vector arrow plots 

for the neighbouring transition states. A magnification of the vector arrow plot 

in the domain of the nucleus at the reference angle Φ1 = 10° is shown in Figure 

S7b, together with the vector arrows for the neighbouring transition states.  

 

Figure S3c shows the superposition of all vector arrow plots of the chosen bg 

normal modes for the transition states and for the global minimum structures. 

Magnifications are shown in Figure S7b. These Figures confirm the nuclear 

motions of the tubular rotor La-[B2@B18]-La with its molecular wheel (B2) 

rotating in the pseudo-rotating tubular bearing (B18).        
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