SUPPLEMENTARY MATERIAL

Experimental and theoretical studies on glucose conversion in ethanol solution to 5-Ethoxymethylfurfural and Ethyl Levulinate catalyzed by Brønsted acid

Shijie Wang a, Yihang Chen a, Yu Jia a, Guizhuan Xu a*, Chun Chang b,c, Qianhui Guo a, Hongge Tao a*, Caihong Zou a, Kai Li a

a College of Mechanical and Electrical Engineering, Henan Agricultural University, Henan Province, Zhengzhou 450002, China.
b School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, China.
c Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang 457000, China.

*Corresponding authors: xuguizhuan@126.com, thg0218@163.com, Tel.: +86 13653860867
Fig. S1. The geometry structures of the reactants for glucose alcoholysis to HMF catalyzed by Brønsted acid in ethanol solution. Red: oxygen, gray: carbon, white: hydrogen.
Fig. S2. The geometry structures of the reactants for glucose to EG catalyzed by Brønsted acid in ethanol solution. Red: oxygen, gray: carbon, white: hydrogen.
Fig. S3. The geometry structures of the reactants for HMF to EL through LA catalyzed by Brønsted acid in ethanol solution. Red: oxygen, gray: carbon, white: hydrogen.
Fig. S4. The geometry structures of the reactants for HMF alcoholsysis to EL though EMF catalyzed by Bronsted acid in ethanol solution. Red: oxygen, gray: carbon, white: hydrogen.