- Electronic Supplementary Information -

Superparamagnetic nanoparticles with LC polymer brush shell as efficient dopants for ferronematic phases

Karin Koch¹, Matthias Kundt¹, Anda Barkane¹, Hajnalka Nadasi², Samira Webers³, Joachim

Landers³, Heiko Wende³, Alexey Eremin², Annette M. Schmidt^{1*}

¹ Department Chemie, Institut für Physikalische Chemie, Universität zu Köln, Luxemburger Str. 116, D-50939 Köln, email: <u>Annette.schmidt@uni-koeln.de</u>

 ² Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39016 Magdeburg
³ Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Duisburg

Figure S1. a) ATR-IR spectra of pure 9OCB-PHMS (—), CA@Fe₃O₄ (—), OTS@Fe₃O₄ (—) and 9OCB-PHMS@Fe₃O₄ (—), b) TGA of OTS@ Fe₃O₄ (—) and 9OCB-PHMS@ Fe₃O₄ (—).

Figure S2. DSC thermograms of 5CB (—) and 9OCB-PHMS@Fe₃O₄ dispersed in 5CB for different solid dopant volume fractions $\phi_s = 3.6 \cdot 10^{-5}$ (—), $\phi_s = 7.2 \cdot 10^{-5}$ (•), $\phi_s = 1.8 \cdot 10^{-4}$ (—), $\phi_s = 3.7 \cdot 10^{-4}$ (—), $\phi_s = 7.2 \cdot 10^{-4}$ (—) and $\phi_s = 1.8 \cdot 10^{-3}$ (—).

Table S1. Mass loss Δm_{TGA} , specific particle functionality $f_{9OCB,p}$ and surface functionalization density σ_A for 9OCB-PHMS@CoFe₂O₄ and 9OCB-PHMS@Fe₃O₄.

Figure S 3. Normalized ZFC-FC magnetization curve recorded at 10 mT for 9OCB-PHMS@CoFe₂O₄ in 5CB.

Table S2. Saturation magnetization M_s , magnetic moment m and coercitivity field H_c determined by VSM, and bulk saturation magnetization $M_{s,bulk}$ for CoFe₂O₄ and Fe₃O₄.

partic	le	Ms Am⁻²⋅kg⁻¹	<i>M</i> _{s,bulk} Am⁻²⋅kg⁻¹	<i>m</i> A m²	<i>H</i> c kAm⁻¹	Mr / Ms
Fe₃O	4	61.2	86.3 ²	1.17·10 ⁻¹⁹	-	-
CoFe ₂ 0	D 4 [*]	71.4	75.0 ³	1.39·10 ⁻¹⁹	9.0	0.25

*taken from ref¹

References

- 1 K. Koch, M. Kundt, A. Eremin, H. Nadasi and A. M. Schmidt, Efficient ferronematic coupling with polymer-brush particles, *Physical Chemistry Chemical Physics*, 2020, **22**, 2087–2097.
- 2 S. Thurm and S. Odenbach, Particle size distribution as key parameter for the flow behavior of ferrofluids, *Physics* of *Fluids*, 2003, **15**, 1658–1664.
- 3 M. Rajendran, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi and C. K. Majumdar, Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: Variation with crystallite size, *Journal of Magnetism and Magnetic Materials*, 2001, 232, 71–83.