Electronic Supplementary Information

Unveiling the mechanisms of organic room temperature phosphorescence

in various surrounding environments: a computational study

Ancong Zhao¹, Xiulan Wu¹, Xin Jiang¹, Jingran Gao¹, Jian Wang^{2*}, Wei Shen^{1*}

¹ Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China

² School of Elementary Education, Chongqing Normal University, Chongqing, 400715, P.R. China

Content

Computational details for NTO2
Fig. S1 Molecular structures with the labeled atom index of complex b2
Fig. S2 Calculated orbital energy levels, energy gaps and electron density contours of HOMOs
and LUMOs for complex at S_0 equilibrium geometries in three cases
Table. S1 Representative dihedral angles and bond angles are detailed in the table
Table. S2 Selected dihedral angles and bond angles (in deg, marked in Fig. S_1) of S_0 , S_1 , and T_1
states in solution, crystal and amorphous phase, respectively
Table. S3 Packing structure of complex b and excitonic coupling in crystal phase4
Table. S4 Packing structure of complex b and excitonic coupling in amorphous phase4

^{*} Corresponding Author: wangjian@cqnu.edu.cn (Jian Wang), shenw@swu.edu.cn (Wei Shen)

Computational details for NTO

To begin with, the central molecule is relaxed while the molecules of low level region are frozen during the QM/MM geometry optimizations with the ω B97XD functional and 6-31G** basis. Then, the molecules of low level region are replaced by background charges in NTO calculation with iop(9/40=4).

Fig. S1 Molecular structures with the labeled atom index of complex b.

Fig. S2 Calculated orbital energy levels, energy gaps and electron density contours of HOMOs and LUMOs for complex at S₀ equilibrium geometries in three cases.

	solution	crystal phase	amorphous phase	
θ1	C5-C6-C7-N8	C5-C6-C7-N8	C5-C6-C7-N8	
θ_2	C1-O2-C3-C4	C1-O2-C3-C4	C1-O2-C3-C4	
θ_3	C6-C7-N8-C10	C6-C7-N8-C10	C6-C7-N8-C10	
α_1	C5-C6-C7	C5-C6-C7	C5-C6-C7	
α_2	C6-C7-C8	C6-C7-C8	C6-C7-C8	
α3	C7-N8-C10	C7-N8-C10	C7-N8-C10	

Table. S1 Representative dihedral angles and bond angles are detailed in the table.

Table. S2 Selected dihedral angles and bond angles (in deg, marked in Fig. S_1) of S_0 , S_1 , and T_1 states in solution, crystal and amorphous phase, respectively.

	sol	ution ph	ase	cr	ystal pha	ise	amo	amorphous phase		
	S ₀	S_1	T ₁	S ₀	S ₁	T ₁	S ₀	S ₁	T ₁	
θ_1	101.1	73.1	66.7	106.9	109.1	107.3	95.7	94.0	95.6	
θ_2	179.8	179.5	179.8	174.3	177.5	177.8	173.6	176.0	174.1	
θ_3	90.1	73.6	84.1	103.3	103.3	107.5	79.9	81.0	79.4	
α1	121.1	118.1	117.8	120.6	120.6	120.7	119.7	119.0	119.6	
α2	112.4	101.0	109.4	113.0	109.1	108.1	115.2	112.3	115.2	
α3	124.1	122.2	122.8	124.4	123.4	123.9	123.6	122.8	122.4	

Dimer	J	Dimer	J	THE REAL
V1	-0.215	V5	0.006	V6 V7
V2	-0.206	V6	0.016	
V3	0.084	V7	-0.023	
V4	-0.006	V8	0.083	crystal phase

Table. S3 Packing structure of complex b and excitonic coupling in crystal phase.

Table. S4 Packing structure of complex b and excitonic coupling in amorphous phase.

Dimer	J	Dimer	J	Dimer	J	
V1	-0.196	V6	0.031	V11	-0.056	
V2	-0.006	V7	-0.010	V12	0.092	V3 V2 V14 V3 V2
V3	0.443	V8	-0.001	V13	0.011	
V4	0.035	V9	0.026	V14	-0.033	
V5	0.003	V10	-0.051			1 & Colorad Size and de
						amorphous phase