Electronic Supporting Information

Chiral Recognition *Via* a Stereodynamic Vanadium Probe Using the Electronic Circular Dichroism Effect in Differential Raman Scattering

Ewa Machalska, ^{†a,b} Natalia Hachlica, ^{†a,b} Grzegorz Zajac,^{b,c} Davide Carraro,^d Malgorzata Baranska,^{a,b} Giulia Licini,^d Petr Bouř,^{*c} Cristiano Zonta^{*d} and Agnieszka Kaczor^{*a,b}

^a Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow 30-387, Poland

^b Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 20, 248, Baland

Krakow 30-348, Poland

^c Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic

^d Dipartimento di Scienze Chimiche, Università degli Studi di Padova and CIRCC, Padova Unit, 35131 Padova, Italy

[†] these authors contributed equally

* corresponding authors

Content

Fig. S1. UV-vis and ECD spectra of oxo-vanadium(V) aminotriphenolate and *S*- and *R*- enantiomers of *N*-(1-phenylethyl)acetamide measured in various solvents.

Fig. S2. Comparison of normalized Raman spectra of the S-stereoisomer of *N*-(1-phenylethyl)acetamide, pure oxo-vanadium(V) aminotriphenolate and their mixture in CHCI₃.

Fig. S3. UV-vis, ECD, Raman and ROA spectra of the supramolecule composed of oxo- vanadium(V) aminotriphenolate and the racemic mixture of *S*- and *R*-enantiomers of *N*-(1- phenylethyl)acetamide in CHCl₃.

Fig. S4. Experimental DOC(R) spectra for CHCl₃, CH₂Cl₂, and CH₃CN.

Fig. S5. Raman and ROA spectra of pure *N*-(1-phenylethyl)acetamide in CH₃CN.

Fig. S6. CID dependence on ligand and complex concentrations.

Fig. S7. Raman and ROA spectra of the unit composed of oxo-vanadium(V) aminotriphenolate and N-(1-phenylethyl)acetamide in CH₂Cl₂ showing low-intensity signals due to the complex.

Fig. S8. Comparison of experimental and DFT calculated UV-Vis and ECD spectra of the supramolecule composed of oxo-vanadium(V) aminotriphenolate and S enantiomer of N-(1- phenylethyl)acetamide in CH₂Cl₂.

Fig. S9. Reproducibility of Raman and ROA spectra of the unit built from oxovanadium(V) aminotriphenolate and as S stereoisomer of *N*-(1phenylethyl)acetamide measured in various solvents.

Table S1. Comparison of CID values calculated based on experimental Raman and ROA spectra and experimental DOC and ECD spectra of the unit composed of oxo-vanadium(V) aminotriphenolate and *N*-(1-phenylethyl)acetamide.

Fig. S1. UV-vis and ECD spectra of oxo-vanadium(V) aminotriphenolate (**panel A**) as well as S- and *R*- enantiomers of *N*-(1-phenylethyl)acetamide (**panel B**) measured in CHCl₃, CH₂Cl₂ and CH₃CN. The green dotted lines indicate the excitation wavelength of the ROA laser (532 nm).

Fig. S2. Comparison of normalized Raman spectra of the mixture (**S-ligand+complex**) of oxovanadium(V) aminotriphenolate $(1 \cdot 10^{-4} \text{ mol} \cdot \text{dm}^{-3})$ in presence of S-stereoisomer of *N*-(1-phenylethyl)acetamide (8 \cdot 10^{-4} \text{ mol} \cdot \text{dm}^{-3}) in CHCl₃ as well as pure S-stereoisomer of *N*-(1-phenylethyl)acetamide (**S-ligand**, $3 \cdot 10^{-1} \text{ mol} \cdot \text{dm}^{-3}$) and pure oxo-vanadium(V) aminotriphenolate (**complex**, $3 \cdot 10^{-5} \text{ mol} \cdot \text{dm}^{-3}$) in CHCl₃.

Fig. S3. UV-vis, ECD, Raman and ROA spectra of the supramolecule composed of oxo-vanadium(V) aminotriphenolate and the racemic mixture of *S*- and *R*- enantiomers of *N*-(1-phenylethyl)acetamide in CHCl₃. Ligand and complex concentrations are $8 \cdot 10^{-4}$ mol·dm⁻³ and $1 \cdot 10^{-4}$ mol·dm⁻³ respectively. ROA spectra have dominant contribution from ECD-Raman.

Wavenumber / cm⁻¹

Fig. S4. Experimental DOC(R) spectra for CHCl₃, CH₂Cl₂, and CH₃CN.

Fig. S5. Raman and ROA spectra of pure *N*-(1-phenylethyl)acetamide in CH₃CN (3.2·10⁻¹ mol·dm⁻³).

Fig. S6. CID dependence on ligand and complex concentrations for the band at 760 cm⁻¹. For varied ligand concentrations, complex concentration was constant and equal to $1 \cdot 10^{-4}$ mol·dm⁻³ and vice versa.

Fig. S7. ROA (12 and 48 hours accumulation time in **A** and **B**, respectively) and Raman (**C**) spectra of the unit composed of oxo-vanadium(V) aminotriphenolate $(1 \cdot 10^{-4} \text{ mol} \cdot \text{dm}^{-3})$ and S-enantiomer of *N*-(1-phenylethyl)acetamide (8 \cdot 10^{-4} mol \cdot \text{dm}^{-3}) in CH₂Cl₂ showing low-intensity signals due to the complex (denoted grey, 300 mW). Raman spectrum of a pure CH₂Cl₂ given as a black line (**D**). ROA spectra have dominant contribution from ECD-Raman of the solvent.

(S)-ligand+complex

Fig. S8. Comparison of experimental and DFT calculated UV-Vis and ECD spectra of the supramolecule composed of oxo-vanadium(V) aminotriphenolate and *S* enantiomer of *N*-(1-phenylethyl)acetamide in CH₂Cl₂. Ligand and complex concentrations are $8 \cdot 10^{-4}$ mol·dm⁻³ and $1 \cdot 10^{-4}$ mol·dm⁻³, respectively. Black lines are theoretical oscillator and rotatory strengths; green dotted lines show experimental and theoretical ROA/Raman incident light wavelength.

Fig. S9. Raman and ROA (mainly ECD-Raman) spectra of the unit built from oxo-vanadium(V) aminotriphenolate and as *S* stereoisomer of *N*-(1-phenylethyl)acetamide measured in CHCl₃, CH₂Cl₂ or CH₃CN, respectively, obtained based on two independent measurements of two independent samples. Presented spectra were averaged for 24 (CHCl₃, CH₂Cl₂) or 12 (CH₃CN) hours.

Table S1. Comparison of CID values calculated based on experimental Raman and ROA spectra and experimental DOC and ECD spectra of the supramolecular system composed of oxo-vanadium(V) aminotriphenolate (complex), N-(1-phenylethyl)acetamide (ligand) and CHCl₃ for depolarized bands.

Complex	Ligand	Band wave-	CID ^a for R stereoisomer.		CID ^a for S stereoisomer.	
concentrati on (mol∙dm [.] ³)	concentrati on (mol∙dm ⁻ ³)	number (cm ⁻ 1)	ROA/Rama n intensity	131 952	ROA/Rama n intensity	131 952
5·10 ⁻⁵	1.10-4	260	1.7.10-4	1.3.10-4	-1.3·10 ⁻⁴	-1.4·10 ⁻⁴
		760	1.5.10-4	1.2.10-4	-1.2·10 ⁻⁴	-1.1·10 ⁻⁴
		1218	9.5·10 ⁻⁵	1.0.10-4	-9.4·10 ⁻⁵	-1.2·10 ⁻⁴
1·10 ⁻⁴	1.10-4	260	1.1.10-4	1.9.10-4	-1.4·10 ⁻⁴	-1.7·10 ⁻⁴
		760	1.3.10-4	1.6.10-4	-1.2·10 ⁻⁴	-1.6·10 ⁻⁴
		1218	1.9.10-4	1.6.10-4	-1.1·10 ⁻⁴	-1.7·10 ⁻⁴
1·10 ⁻⁴	2.10-4	260	2.1.10-4	1.5.10-4	-1.1.10-4	-1.5·10 ⁻⁴
		760	2.3.10-4	1.7.10-4	-1.1·10 ⁻⁴	-1.7·10 ⁻⁴
		1218	2.3.10-4	1.4.10-4	-1.2·10 ⁻⁴	-1.7·10 ⁻⁴
1.10-4	8-10-4	260	1.5.10-4	2.0.10-4	-3.9.10-4	-2.1.10-4
		760	1.6.10-4	2.1.10-4	-3.6.10-4	-1.9·10 ⁻⁴
		1218	1.9.10-4	1.8-10-4	-4.3·10 ⁻⁴	-1.8·10 ⁻⁴
2·10 ⁻⁴	1.10-4	260	2.4.10-4	2.3.10-4	-2.2·10 ⁻⁴	-2.8·10 ⁻⁴
		760	2.5.10-4	2.1.10-4	-2.1·10 ⁻⁴	-2.6.10-4
		1218	2.4.10-4	2.1.10-4	-1.3·10 ⁻⁴	-1.7.10-4

^a ECD signal expressed as ellipticity (in m°), assumed 1 cm ROA pathlength.