SUPPORTING INFORMATION

Theoretical investigation of the S_{N2} mechanism of $X^- [X = SH, PH_2] + CH_3Y [Y = F, Cl, Br, I]$ reactions in water solution

Chen Li, Xin Xin and Dunyou Wang*

College of Physics and Electronics, Shandong Normal University, Jinan Shandong 250014, China.

*Corresponding Author. Electronic mail: dywang@sdnu.edu.cn
Fig. S1 Structural evolution along the NEB reaction path for the PH$_2^-$ + CH$_3$F reaction in water solution. No. a is the reactant complex, No. e is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S2 Structural evolution along the NEB reaction path for the $\text{PH}_2^− + \text{CH}_3\text{Cl}$ reaction in water solution. No. a is the reactant complex, No. f is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S3 Structural evolution along the NEB reaction path for the PH_2^- + CH_3Br in water solution. No. a is the reactant complex, No. e is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S4 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the PH$_2^-$ + CH$_3$F reaction in water solution.
Fig. S5 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the $\text{PH}_2^- + \text{CH}_3\text{Cl}$ reaction in water solution.
Fig. S6 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the \(\text{PH}_2^- + \text{CH}_3\text{Br} \) reaction in water solution.
Fig. S7 Structural evolution along the NEB reaction path for the $\text{SH}^- + \text{CH}_3\text{F}$ reaction in water solution. No. a is the reactant complex, No. f is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S8 Structural evolution along the NEB reaction path for the $\text{SH}^- + \text{CH}_3\text{Cl}$ reaction in water solution. No. a is the reactant complex, No. f is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S9 Structural evolution along the NEB reaction path for the \(\text{SH}^- + \text{CH}_3\text{Br} \) reaction in water solution. No. a is the reactant complex, No. f is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S10 Structural evolution of the NEB reaction path for the $\text{SH}^- + \text{CH}_3\text{I}$ reaction in water solution. No. a is the reactant complex, No. f is the transition state, and No. j is the product complex. The units of the distances and angles are angstroms and degrees, respectively.
Fig. S11 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the $\text{SH}^- + \text{CH}_3\text{F}$ reaction in water solution.
Fig. S12 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the $\text{SH}^- + \text{CH}_3\text{Cl}$ reaction in water solution.
Fig. S13 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant state as the energy reference point for the $\text{SH}^- + \text{CH}_3\text{Br}$ reaction in water solution.
Fig. S14 The potentials of mean force calculated at DFT/MM and CCSD(T)/MM levels of theory and solvent energy contribution with the reactant complex as the energy reference point for the $\text{SH}^- + \text{CH}_3\text{I}$ reaction in water solution.