Supplementary Information

Understanding Charge Storage in Nb₂CT_x MXene as Anode Material

for Lithium Ion Batteries

Renfei Cheng^{a,b}, Tao Hu^c, Zuohua Wang^d, Jinxing Yang^{a,b}, Ruqiao Dai^{a,b}, Weizhen Wang^a, Cong Cui^{a,b}, Yan Liang^a, Chao Zhang^a, Cuiyu Li^e, Hailong Wang^f, Hongxia Lu^f, Zhiqing Yang^a, Hongwang Zhang^d, Xiaohui Wang^{* a}

^a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

^b School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

^c Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China

^d National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

^e Advanced Computing East China Sub-center, Suma Technology Company Limited, Kunshan 215300, China

^f School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

*Corresponding author *E-mail:* wang@ imr.ac.cn (X. Wang)

Fig. S1 Schematic diagram for synthesis of multilayer Nb_2CT_x MXene.

Fig. S2 Powder XRD pattern of as-prepared Nb₂AlC. The asterisks indicate Nb₃Al₂C as a secondary phase in the as-prepared Nb₂AlC MAX phase.

Fig. S3 Simulated XRD patterns of simple hexagonal and Bernal stacked Nb₂CO₂.

Fig. S4 SEM images of Nb₂AlC with different magnifications.

Fig. S5 (a) SEM image, and (b) statistical size distribution histogram of Nb_2CT_x .

Fig. S6 Nitrogen adsorption/desorption isotherms of (a) Nb₂AlC and (b) Nb₂C T_x . The BET specific surface areas of Nb₂AlC and Nb₂C T_x are 4.5 and 3.8 m² g⁻¹, respectively.

Fig. S7 Cross-sectional microstructure of Nb_2CT_x .

Fig. S8 Raman spectra of Nb₂AlC MAX phase and Nb₂C T_x MXene. The asterisks indicate the Raman bands of Nb₂O₅ existed on the surface of Nb₂C T_x .

Fig. S9 ¹⁹F NMR spectrum of Nb₂C T_x collected at 14 T under 12 kHz magic-angle spinning.

Fig. S10 (a) The operating voltage of Nb₂C T_x at different cycle. (We evaluated the average voltage of Nb₂C T_x using the equation: $E = Q V_{op}$, where E is energy density, V_{op} is operating voltage, and Q is reversible capacity.¹) (b) Charge/discharge curves of Nb₂C T_x at various rates. (c) Rate performance of Nb₂C T_x at various rates. (d) Long-term cycling performance of Nb₂C T_x at a rate of 1C.

Fig. S11 Ex situ XPS high resolution spectra of C 1s, Nb 3d, and O 1s at state of full lithiation (0.05 V) and full delithiation (3.0 V).

Fig. S12 Cell voltage dependence of XRD patterns of Nb_2CT_x . Note that the peaks are fitted with Voigt function.

Fig. S13 Change of FWHM for Nb_2CO_x during the discharge and charge process. FWHM is the abbreviation of full width at half maximum.

Fig. S14 Comparison of the volume expansion of the Nb₂C T_x with previously reported intercalation anode materials²⁻⁸.

Fig. S15 (a) XRD pattern of the as-prepared LiFePO₄ product. SEM image (b), TEM images (c, d) of LiFePO₄/C material.

Fig. S16 (a) First charge and discharge profiles of the half cell with LiFePO₄ cathode composites at a rate of 0.1 C ($1C = 170 \text{ mAh g}^{-1}$). (b) Rate performance of the LiFePO₄ cathode in the half cell.

Table S1. Nb 3d core level peak analyses. Each peak corresponds to a specific type of niobium: Nb–C, C–Nb–O, or Nb–O. Nb 3d core level was fitted with a fixed area ratio of 3:2 for all Nb 3d5/2–Nb 3d3/2 and doublet separation of 2.8 eV for Nb–C, 2.8 eV for C–Nb–O, and 2.8 eV for Nb–O.

	Fraction (%)			
Sputtering time	Nb–C	C–Nb–O	Nb–O	
	202.7±0.1 eV	206.0±0.1 eV	207.0 eV	
0 s	39.8±4.9	40.1±4.9	20.1±4.9	
60 s	72.6±6.9	27.4±6.9	_	
120 s	77.1±7.9	22.9±7.9	_	

Table S2. O 1s core level peak analyses. Each peak corresponds to a specific type of oxygen: Nb–O, C–Nb–O or H₂O_{ads}.

	Fraction (%)				
Sputtering time	Nb–O C–Nb–O		H_2O_{ads}	C–O	
	530.1 eV	531.2±0.2 eV	532.5±0.2 eV	533.3±0.1 eV	
0 s	35.4±3.3	39.0±3.3	11.4±3.3	14.2±3.3	
60 s	_	84.8±4.7	6.8±4.7	8.4±4.7	
120 s	_	75.4±4.1	15.4±4.1	9.2±4.1	

	0,00000				
	Fraction (%)				
Sputtering time	Nb–C	С–С	С–О	O-C=O	
	282.4±0.1 eV	284.6	285.5±0.1 eV	288.4 eV	
0 s	10.6±4.0	58.0±4.0	13.8±4.0	17.6±4.0	
60 s	23.4±3.4	60.5±3.4	16.1±3.4	_	
120 s	27.3±3.7	72.7±3.7	_	_	

Table S3. C 1s core level peak analyses. Each peak corresponds to a specific type of carbon: Nb–C, C–C, C–O or O–C=O.

Table S4. Summary of atomic composition in the Nb_2CT_x .

Element	Atomic fraction (%)	Error (%)	
Nb	34.67	7.14	
С	17.73	2.99	
О	39.37	10.21	
F	7.64	1.98	
Al	0.59	0.15	

Table S5. Bader charge of the elements in Nb₂CO₂Li₂ and Nb₂C T_x with different terminated groups.

	Bader charge					
	Nb	С	0	Li	F	Н
Nb ₂ CO ₂ Li ₂	1.59	-1.77	-1.55	0.84	_	_
Nb ₂ CF ₂	1.65	-1.80	_	_	-0.75	_
Nb ₂ C(OH) ₂	1.66	-1.82	-1.31	_	_	0.55
Nb ₂ CO ₂	2.04	-1.75	-1.16	_	_	_

References

- 1 Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen, *Chem. Soc. Rev.*, 2015, **44**, 5926-5940.
- 2 M. Winter, J. O. Besenhard, M. E. Spahr and P. Novák, *Adv. Mater.*, 1998, **10**, 725-763.
- 3 A. Agrawal, K. Biswas, S. K. Srivastava and S. Ghosh, J. Solid State Electrochem., 2018, 22, 3443-3455.
- 4 C. D. Quilty, L. M. Housel, D. C. Bock, M. R. Dunkin, L. Wang, D. M. Lutz, A. Abraham, A. M. Bruck, E. S. Takeuchi, K. J. Takeuchi and A. C. Marschilok, ACS Appl. Energy Mater., 2019, 2, 7635-7646.
- 5 R. van de Krol, A. Goossens and E. A. Meulenkamp, *J. Electrochem. Soc.*, 1999, **146**, 3150-3154.
- 6 Q. Liu, G. Tan, P. Wang, S. C. Abeyweera, D. Zhang, Y. Rong, Y. A.Wu, J. Lu, C.-J. Sun, Y. Ren, Y. Liu, R. T. Muehleisen, L. B. Guzowski, J. Li, X. Xiao and Y. Sun, *Nano Energy*, 2017, **36**, 197-205.
- 7 P. C. Tsai, W. D. Hsu and S. K. Lin, J. Electrochem. Soc., 2014, 161, A439-A444.
- 8 B. Guo, X. Yu, X.-G. Sun, M. Chi, Z. A. Qiao, J. Liu, Y. S. Hu, X. Q. Yang, J. B. Goodenough and S. Dai, *Energy Environ. Sci.*, 2014, 7, 2220-2226.