Electronic Supplementary Information for Promising

thermoelectric candidate based on CaAs₃ monolayer: a first

principles study

Xin Liu¹, Dingbo Zhang¹, Hui Wang¹, Yuanzheng Chen¹, Hongyan Wang¹ and Yuxiang Ni^{1 a)}

¹ School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.

* Corresponding author.

Yuxiang Ni

School of Physical Science and Technology, Southwest Jiaotong University, Chengdu

610031, P. R. China.

E-mail Address: yuxiang.ni@swjtu.edu.cn

Fig. S1. The band structure of $CaAs_3$ monolayer calculated from PBE (a) and PBE+SOC (b).

Fig. S2. Lorenz number as a function of carrier concentration (holes and electrons) at 300, 500, and 800 K. Based on the Seebeck coefficients, the Lorenz number can be

calculated by $L = 1.5 + exp^{\text{[m]}} \left[-\frac{|S|}{116} \right]_{.}$