Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Electronic Supplementary Information Fragmentation and rearrangement of Breslow intermediates: branches to both of radical and ionic pathways

Ming-Hsiu Hsieh¹ and Jen-Shiang K. Yu*,1,2,3,4

¹Institute of Bioinformatics and Systems Biology,
²Department of Biological Science and Technology,
³Institute of Molecular Medicine and Bioengineering,
⁴Center for Intelligent Drug Systems and Smart Bio-devices (IDS²B),
National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Table of contents

Tab	le of contents	1
Tab	le of figures	2
1.	Computational details	5
2.	Breslow intermediate of the model system	10
3.	Calculation of pKa values	21
4.	Breslow intermediate of N1-protonated thiamin	25
5.	List of absolute energies and optimized structures	29
6.	References	.126

Table of figures

Figure S1. Active space of SA-CAS(8,8) wavefunction of the enol system (TSa2-67). Ground-state electron occupation numbers are listed below each natural orbital. The isovalue is 0.02, and natural orbitals are calculated at the level of SA-CASSCF/aug-cc-Figure S2. Active space of SA-CAS(10,10) wavefunction of the enolate system (TS'a2-67). Ground-state electron occupation numbers are listed below each natural orbital. The isovalue is 0.02 except for the Rydberg state, whose isovalue is 0.00053. Natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ+7s7p//UM06-2X-Figure S3. Energy profiles of the fragmentation and rearrangement of a) the enol and b) the enolate forms of model Breslow intermediates. The energies are calculated at the levels of UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p), and UM06-2X-D3/6-Figure S4. Energy profile of the doublet systems of a) the enol and b) the enolate forms of model Breslow intermediates. The energies are calculated at the levels of UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p), and UM06-2X-D3/6-Figure S5. Two representative orbitals of Rydberg-like state (top) and the first excited state (bottom) of the enol Breslow intermediate (2a) plotted with an isovalue of 0.02. The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-Figure S6. Potential energy surfaces of the enol system calculated at the level of threestate MS-CASPT2/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p). The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.14 Figure S7. Comparison between the potential energy surfaces of the enol obtained by MS-CASPT2 and UM06-2X-D3 methods. The vertical dashed line indicates the Figure S8. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the enolate Breslow intermediate (2'a) with an isovalue of 0.02 except for the Rydberg orbital (isovalue = 0.00042). The natural orbitals are calculated at the level Figure S9. Potential energy surfaces of the enolate system calculated at the level of fivestate MS-CASPT2/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p). The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.18 Figure S10. Comparison between the potential energy surfaces of the enolate obtained from MS-CASPT2 and UM06-2X-D3 methods. The vertical dashed line indicates the Figure S11. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the ionic intermediates ([8a 4a]) with an isovalue of 0.02 except for the Rydberg state (isovalue = 0.0015). The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p)......19 Figure S12. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the radical pair ([6a 7'a]) with an isovalue of 0.02 except for the Rydberg state (isovalue = 0.0018). The natural orbitals are calculated at the level of SA-

CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p)20
Figure S13. Calculated pKa values of the hydroxyl groups. The three explicit water
molecules added in each structure are not shown23
Figure S14. Calculated pKa values of the nitrogen atoms. The single explicit water
molecule added in each structure is not shown24
Figure S15. Free energy profiles of a) the enol, and b) the enolate of N1-protonated
thiamin. The energies are calculated at the level of UM06-2X-D3/6-31+G(d,p) with
solvent effect
Figure S16. Free energy profile of a) N1-protonated imine thiamin, and b) connection
between the amine and imine systems. The energies are calculated at the level of UM06-
2X-D3/6-31+G(d,p) with solvent effect
Figure S17. Summary of reactions in the enolate amine (2'cN1H) and enol imine
systems (i2cN1H)

1. Computational details

All structures are first optimized in the gas phase at the level of open-shell density functional theory (DFT) using the M06-2X functional¹ with D3 dispersion correction² incorporating the 6-31+G(d,p) basis set,³ denoted as UM06-2X-D3/6-31+G(d,p). Frequencies are calculated to confirm the stationary points. All of the computed wavefunctions are confirmed stable. For model systems, single-point energies are calculated by coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T))^{4, 5} combined with Dunning's aug-cc-pVDZ basis set⁶ to assess the accuracy in energies. The open-shell UCCSD(T) calculations are carried out based on unrestricted Hartree-Fock determinant as the reference wavefunction. For the systems of thiamin and N-allyl benzothiazole, Truhlar's universal solvent model (SMD)⁷ is additionally employed to optimize the geometries and to calculate the Gibbs free energies of each species at 298.15K. In the DFT calculations, the radical character could be verified by the plots of spin densities, while the ionic character and charge could be assigned by the Mulliken charges. The DFT and CCSD(T) calculations are performed with Gaussian 16 program.⁸ Comparison between the DFT and CCSD(T) energies show that the deviations between the two methods are less than 5 kcal/mol, suggesting the accuracy in the combination of the functional and the basis set (Table S1 and S2) for the NHC systems. For detailed mechanisms of model systems, see Section 2. The notations of total energy and Gibbs free energy are E and G, respectively.

	UM06-2X-D3/	UCCSD(T)/aug-cc-pVDZ//
	6-31+G(d,p)	UM06-2X-D3/6-31+G(d,p)
neutral singlet		
2a	0.0	0.0
TSa ₂₋₆₇	37.2	34.7
[6a 7a]	32.8	30.6
TSa ₂₋₅	27.9	25.8
5a	-27.1	-31.7
doublet cation		
$2a^+$	137.7	136.9
TSa2-67 ⁺	178.1	174.7
[6a 7a] ⁺	177.6	173.2

Table S1. Comparison between energies (kcal/mol) calculated at DFT and CCSD(T) levels in the enol system.

Table S2. Comparison between energies (kcal/mol) calculated at DFT and CCSD(T)

levels in the enolate system	1.
------------------------------	----

	UM06-2X-D3/	UCCSD(T)/aug-cc-pVDZ//
	6-31+G(d,p)	UM06-2X-D3/6-31+G(d,p)
singlet anion		
2'a	0.0	0.0
TSa' 2-67	20.4	21.4
[6a 7'a]	13.9	14.5
[8a 4a]	8.5	8.0
TS'a 2-5	16.4	16.0
5'a	-18.2	-22.5
neutral doublet ^a		
2'a ⁺	19.3	20.7
TS'a ₂₋₈₄ ⁺	47.9	45.3
[8a 4a] ⁺	32.8	28.8

^{*a*} The neutral doublet compounds have one less electron compared to the singlet anion species. To keep consistency with the compound names in the enol system in Table S1, we denote the corresponding neutral doublet compounds with the superscript "+" next to the neutral doublet compounds.

Multireference theories are exclusively carried out to examine the electronic configurations of each geometry in each system, and to quantify the radical and the ionic characters. State-average complete active space self-consistent field (SA-CASSCF)⁹ with the multi-state dynamical correlation in the second-order perturbation theory (MS-CASPT2)¹⁰ is performed along the intrinsic reaction coordinate (IRC). which are determined at DFT level with local quadratic approximation (LQA).^{11, 12} The active spaces consist of the π and π^* orbitals of NHC, π and π^* orbitals of allyl group as well as σ and σ^* orbitals of the C–N bond, resulting in the combination of 8 active electrons in 8 active orbitals (denoted as SA-CAS(8,8)) for the enol system (Figure S1) and SA-CAS(10,10) for the enolate system (Figure S2), respectively. Rydberg states found in the enolate system are depicted with additional 7 s and 7 p functions, whose exponents are set from 0.025 to 0.000025 in an even-tempered manner at the center of mass.¹³ Two-electron integrals are accelerated by the resolution of identity combined with Cholesky decomposition, abbreviated as RICD.¹⁴ In the MS-CASPT2 calculation, the IPEA value is set as 0.25 by default while the imaginary shift is set at 0.1 to eliminate intruder states.^{15, 16} The MS-CASPT2 calculations performed in this work aim to provide a quantitative description rather than qualitative picture. The multireference calculations are performed with the OpenMolcas suite of programs.¹⁷

Figure S1. Active space of SA-CAS(8,8) wavefunction of the enol system (**TSa**₂₋₆₇). Ground-state electron occupation numbers are listed below each natural orbital. The isovalue is 0.02, and natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p).

Figure S2. Active space of SA-CAS(10,10) wavefunction of the enolate system (**TS'a**₂₋₆₇). Ground-state electron occupation numbers are listed below each natural orbital. The isovalue is 0.02 except for the Rydberg state, whose isovalue is 0.00053. Natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ+7s7p//UM06-2X-D3/6-31+G(d,p).

2. Breslow intermediate of the model system

Structures in Scheme 2 are utilized as our model system to investigate the C–N bond scission regarding the protonation state of the hydroxyl group. Similar to the system of *N*-allyl benzothiazole (2c), the model systems could proceed with a Claisen rearrangement ($2a \rightarrow 5a$ and $2'a \rightarrow 5'a$) with lower energy barriers (*c.a.* 25.8 and 16.0 kcal/mol in the enol and the enolate systems, respectively, at UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p) level) compared to the fragmentation (Figure S3). As a result, the rearrangement product (5a/5'a) is excepted to be the major product. One may propose that the Breslow intermediate could be oxidized first before the fragmentation; however, according to our calculation shown in Figure S4, the required activation energies for C–N bond cleavage are 3~4 kcal/mol higher than the singlet state (37.8 and 24.6 kcal/mol, respectively, for enol and enolate systems at the same level). In addition, the doublet states are energetically higher than the singlet state throughout the reaction coordinate. It should be noted that the energies in Figure S4 are total energies (E) in the gas phase and should not be compared directly to other energy profiles.

Figure S3. Energy profiles of the fragmentation and rearrangement of a) the enol and b) the enolate forms of model Breslow intermediates. The energies are calculated at the levels of UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p), and UM06-2X-D3/6-31+G(d,p) in parentheses.

Figure S4. Energy profile of the doublet systems of a) the enol and b) the enolate forms of model Breslow intermediates. The energies are calculated at the levels of UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p), and UM06-2X-D3/6-31+G(d,p) in parentheses.

To investigate the C–N bond cleavage, we perform three-state and five-state MS-CASPT2 calculations for the enol and the enolate systems, respectively. Rydberg states are observed in Breslow intermediates of both systems. For the enol system, a Rydberglike orbital, which is not as diffused as the Rydberg orbital, is found at the geometry of Breslow intermediate 2a and is included in the active space (Figure S5). This Rydberglike state is 87.9 kcal/mol higher than the ground state at the level of MS-CASPT2/augcc-pVDZ//UM06-2X-D3//6-31+G(d,p). In addition, when the C-N distance increases, the Rydberg-like state vanishes (Figure S6). The observation indicates that the fragmentation reaction does not relate to the high-energy Rydberg-like state for the enol system. The third state (for clarity, we denote the third state as the first excited state hereafter) results from a $\pi \to \pi^*$ transition and has a relative energy of 96.2 kcal/mol at the geometry of 2a (Figure S5). The potential energy surfaces (PESs) of the three states in the enol system are shown in Figure S6, where the three states do not cross each other. The comparison between the PESs obtained from MS-CASPT2 and DFT shows that at the geometry of the transition state located by DFT, the energy is overestimated by around 4 kcal/mol (Figure S7). The PES calculated with MS-CASPT2 reveals a barrierless process. It should be noted again that the calculated barrier at UCCSD(T)/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p) level is 34.7 kcal/mol (Table S1), which is closer to the DFT energy.

Figure S5. Two representative orbitals of Rydberg-like state (top) and the first excited state (bottom) of the enol Breslow intermediate (**2a**) plotted with an isovalue of 0.02. The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p).

Figure S6. Potential energy surfaces of the enol system calculated at the level of threestate MS-CASPT2/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p). The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.

Figure S7. Comparison between the potential energy surfaces of the enol obtained by MS-CASPT2 and UM06-2X-D3 methods. The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.

The enolate system, on the other hand, has a very diffused Rydberg orbital (Figure S8). To describe the Rydberg state and separate it from the other excited states, we augment additional 7 s and 7 p diffuse functions with exponents from 0.025 to 0.000025 in an even-tempered manner at the center of mass.¹³ This Rydberg state is approximately 30 kcal/mol above the ground state through the IRC (green curve in Figure S9). The first excited state involves the transition from π on the NHC to π^* on the allyl group and is 77.6 kcal/mol higher than the ground state at the geometry of **2'a**. The second and third Rydberg states are transitions from different π orbitals to the Rydberg states and are 118.1 and 129.9 kcal/mol higher, respectively, than the ground state at the geometry of **2'a** (Figure S8). Figure S9 shows the PESs of the five states in the enolate system. The energy difference between the ground and the first excited states decreases as the fragmentation occurs, while the potential energy curves of the

first excited state and Rydberg state cross each other. Given the small coupling between the Rydberg state, the ground, and the first excited state, the Rydberg state is unlikely to participate in this reaction. The comparison between the PESs obtained from MS-CASPT2 and DFT shows that the energy barrier of the transition state is overestimated by around 8 kcal/mol using DFT (Figure S10). The energy calculated with UCCSD(T) method is 21.4 kcal/mol (Table S1), which is closer to the result of DFT. On the other hand, closed-shell CCSD(T) calculation gives an energy of 16.6 kcal/mol, resembling the MS-CASPT2 calculation with a deviation around 4 kcal/mol. This may be due to nature of the complicated ionic-radical mixing state, which is more suitably characterized as ionic at the transition-state geometry. That is, the closed-shell CCSD(T) and MS-CASPT2 may depict the transition state better than the open-shelled UCCSD(T). Electron occupation numbers of **[8a 4a]** show that the active orbitals are either doubly occupied or empty (Figure S11), while those of **[6a 7'a]** show that the π orbital on the NHC and nonbonding orbital the allyl group are singly-occupied (Figure S12). This confirms the ionic and radical characters of **[8a 4a]** and **[6a 7'a]**, respectively.

Figure S8. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the enolate Breslow intermediate (**2'a**) with an isovalue of 0.02 except for the Rydberg orbital (isovalue = 0.00042). The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p).

Figure S9. Potential energy surfaces of the enolate system calculated at the level of fivestate MS-CASPT2/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p). The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.

Figure S10. Comparison between the potential energy surfaces of the enolate obtained from MS-CASPT2 and UM06-2X-D3 methods. The vertical dashed line indicates the transition-state geometry in the ground state located by DFT.

Figure S11. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the ionic intermediates (**[8a 4a]**) with an isovalue of 0.02 except for the Rydberg state (isovalue = 0.0015). The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p).

Figure S12. Electron occupation numbers of (1) the ground state, (2) the Rydberg state, (3) the first excited state, (4) the second, and (5) the third Rydberg states (from top to bottom) of the radical pair (**[6a 7'a]**) with an isovalue of 0.02 except for the Rydberg state (isovalue = 0.0018). The natural orbitals are calculated at the level of SA-CASSCF/aug-cc-pVDZ//UM06-2X-D3/6-31+G(d,p).

3. Calculation of pKa values

The pKa values are calculated with an efficient and reliable methodology proposed by Thapa and Schlegel.¹⁸ They introduce the combination of the explicit solvent (up to three water molecules) and the implicit solvent model (SMD) to calculate the Gibbs free energies of the deprotonated and the protonated species ($G_{aq,RO-}^*-G_{aq,ROH}^*$). The pKa value is then given by

$$pKa = \frac{\Delta G_{aq}^*}{2.303RT} = \frac{G_{aq,RO-}^* + G_{aq,H+}^* - G_{aq,ROH}^*}{2.303RT}$$

$$G_{aq,H+}^* = G_{g,H+}^\circ + \Delta G_{aq,H+}^* + \Delta G^{1atm \to 1M}$$

$$G_{g,H+}^{\circ} = H_{g,H+}^{\circ} - TS_{g,H+}^{\circ}$$

$$H_{g,H+}^{\circ} = \frac{5RT}{2} = 1.48 \ kcal/mol$$

$$S_{a,H+}^{\circ} = 26.05 \ cal/mol$$

$$\Delta G^*_{aa,H+} = -265.9 \, kcal/mol$$

$$\Delta G^{1atm \to 1M} = RT \ln(24.4) = 1.89 \ kcal/mol$$

where the symbols * and ° denote the standard state of 1 mol/L and 1 atm, respectively. The value $\Delta G^*_{aq,H+}$ is taken directly from the literature,¹⁸ and therefore, at 298.15 K, the pKa is estimated as

$$pKa = \frac{G_{aq,RO-}^* - G_{aq,ROH}^* - 270.30}{2.303 \times 0.001987 \times 298.15}$$

Thapa and Schlegel reported that the mean signed error (MSE) and the standard deviation (STDEV) for alcohols, phenols, and hydroperoxides are -0.02 ± 0.55 when three explicit water molecules are employed at the level of B3LYP/6-311++G(d,p). The MSE and STDEV are 0.95 ± 0.72 at the level of ω B97XD/6-311++G(d,p).

Following this methodology, we calculate the pKa values of the hydroxyl group of Breslow intermediates (**2a**, **2c**, and **2d**) with three explicit waters at the levels of B3LYP/6-311++G(d,p) and ω B97XD/6-311++G(d,p). The calculated pKa values are above 9 for all NHC systems in our study, showing that Breslow intermediate prefers the enol form in neutral solution (Figure S13). The pKa values of the nitrogen atoms (N1 and N3) on the pyrimidine of thiamin Breslow intermediates (**2c**) are calculated with one explicit water at the level of B3LYP/6-311++G(d,p) and ω B97XD/6-311++G(d,p). The calculated pKa values show that N3 is deprotonated in neutral solution, while the proton on N1 is likely to shuttle between solvent molecules and thiamin in the enol form but could be protonated in the enolate form (Figure S14).

Figure S13. Calculated pKa values of the hydroxyl groups. The three explicit water molecules added in each structure are not shown.

Figure S14. Calculated pKa values of the nitrogen atoms. The single explicit water molecule added in each structure is not shown.

4. Breslow intermediate of N1-protonated thiamin

Given that the pKa value of N1 atom is close to 7 (see Session 3 of ESI), we calculate different protonation states regarding that on N1 and the hydroxyl group with DFT and SMD solvent model. The N1-deprotonated systems are shown in the main text (Figure 3). Figure S15 displays the N1-protonated (denoted as **N1H**) enol and enolate systems with an amine group on the pyrimidine ring, while Figure S16 shows the N1-protonated imine system (denoted as **i**).

N1-protonated amine systems (Figure S15) have slightly smaller activation free energies (25.8 and 19.5 kcal/mol for the enol and the enolate systems, respectively, at the level of UM06-2X-D3/6-31+G(d,p)) compared to N1-deprotonated systems (Figure 3). The enol system proceeds through the radical mechanisms, while the enolate system undergoes only the ionic dissociation. This may result from the zwitterionic character of **2'cN1H**.

Figure S15. Free energy profiles of a) the enol, and b) the enolate of N1-protonated thiamin. The energies are calculated at the level of UM06-2X-D3/6-31+G(d,p) with solvent effect.

The Breslow intermediate in the imine system (i2cN1H in Figure S16) has a similar energy to that in the N1-protonated enolate system (2'cN1H in Figure S15). These two compounds correlate each other as a result of proton transfer between the amine group and the hydroxyl group. The imine system undergoes only the radical route

with a free energy barrier of 29.1 kcal/mol (Figure S16a). In addition, the radical pathway of imine (Figure S16a) and the ionic pathway of amine (Figure S15b) could be connected through a hydrogen transfer between the imine of **i6cN1H** and the hydroxyl group of **7c** (Figure S16b). Figure S17 summarizes reactions of these two systems.

Figure S16. Free energy profile of a) N1-protonated imine thiamin, and b) connection between the amine and imine systems. The energies are calculated at the level of UM06-2X-D3/6-31+G(d,p) with solvent effect.

Figure S17. Summary of reactions in the enolate amine (2'cN1H) and enol imine systems (i2cN1H).

5. List of absolute energies and optimized structures

The geometries, total energy (E), zero-point energy (ZPE), enthalpy (H), Gibbs free energy (G), and the expectation value of the square of spin quantum number ($\langle S^2 \rangle$) reported here are calculated with DFT. Single-point energies calculated at the levels of CCSD(T) and MS-CASPT2 are denoted by the subscripts. The units of the Cartesian coordinates and the energies are angstroms and hartree, respectively.

E	-839.360173	С	-0.541187	-1.897051	-0.476306
		С	0.551938	-2.453145	0.054619
E+ZPE	-839.182143	С	0.694131	0.052245	-0.175013
Н	-839.169048	Ν	-0.477094	-0.524515	-0.709006
_		S	1.805016	-1.247548	0.346095
G	-839.221301	н	-1.448123	-2.416153	-0.760231
<s<sup>2></s<sup>	0.0000	н	0.726116	-3.497009	0.262361
		С	1.025444	1.353661	-0.088716
imaginary freq.	N/A	0	0.211394	2.308708	-0.684385
EUCCSD(T)	-837.9482401	н	0.236795	3.115143	-0.155378
		С	2.307677	1.858879	0.491094
Ems-caspt2		н	2.791122	1.107411	1.119355
state 1	-837.7992007	н	3.013313	2.160331	-0.292826
		н	2.121746	2.737754	1.123041
state 2	-837.6591241	С	-1.732511	0.226318	-0.809726
state 3	-837.6459076	н	-1.549124	1.122266	-1.402276
		н	-2.440368	-0.406882	-1.353791
		C	-2.292177	0.588216	0.539082
		н	-1.626839	1.154669	1.189855
		С	-3.511627	0.249733	0.952007

2a neutral singlet, c	optimized in g	gas phase
-----------------------	----------------	-----------

-1.626839	1.154669
-3.511627	0.249733
-3.881452	0.533211
-4.185058	-0.321164

1.932038

0.316206

Н

Н

TSa2-67 neutral singlet, optimized in gas phase

E		-839.300812	
E+ZPE		-839.128152	
Н		-839.114989	
G		-839.166674	
<s<sup>2></s<sup>		0.5915	
imaginary freq.		526.4i	
E _{UCCSD(T)}		-837.892884	
E _{MS-CASPT2}			
st	ate 1	-837.7506269	
st	ate 2	-837.6426196	
st	ate 3	-837.6096679	

С

С

С

Ν

S

Н

Н

-1.247950

-1.263642

0.702169

-0.203327

0.156103

-2.037567

-2.001138

-0.618613

-1.713910

-0.259367

0.242247

-1.765727

-0.380716

-2.502761

-1.372747

-0.557299

-0.352005

-1.243457

0.436187

-2.077331

-0.520418

• •	-		• •		•		1
160	70	noutrol	amalat	optimized	110	and	nhaga
102	12		SHIVEL	ODUIIIIZEU		yas.	DHASE
		110 0001 001	DIIIGIOU	opullineed		5000	PILCOV

E		-839.307895	
E+ZPE		-839.137048	
Н		-839.122185	
G		-839.180584	
<s²></s²>		1.0352	
imaginary freq.		N/A	
E _{UCCSD(T)}		-837.8994725	
E _{MS-CA}	SPT2		
	state 1	-837.7450073	
	state 2	-837.6412943	
	state 3	-837.6171288	

С	-0.989350	1.056397	1.492085
С	-1.176684	1.850358	0.388349
С	0.778045	0.381010	0.353359
Ν	0.087925	0.237826	1.485906
S	0.081704	1.575364	-0.756910
Н	-1.651576	1.050989	2.350503
Н	-1.965044	2.563751	0.199565
С	1.920161	-0.349474	0.026645
0	2.314845	-1.286976	0.919201
Н	3.143143	-1.688499	0.632092
С	2.703334	-0.210023	-1.233675
Н	2.340001	0.616752	-1.845582
Н	3.762014	-0.019636	-1.014960
Н	2.643898	-1.126031	-1.836130
С	-1.395816	-2.176454	0.316783
Н	-0.442483	-2.689523	0.345423
Н	-1.978489	-2.157646	1.232154
С	-1.838294	-1.517047	-0.817333
Н	-1.207400	-1.549700	-1.705117
С	-3.017062	-0.795798	-0.889111
н	-3.314028	-0.281066	-1.794781
н	-3.677532	-0.728005	-0.030181

TC as a manufacture 1	ain alat		: ~-	
I Sa ₂₋₅ neutral	singlet,	optimized	in ga	is phase

E	-839.315779	С	-2
E I 7DE	920 120267	С	-2
C+ZPE	-839.139207	С	-0
Н	-839.127442	Ν	-0
		S	-1
G	-839.175036	н	-2
<s<sup>2></s<sup>	0.0000	н	- 3
		С	1
imaginary freq.	567.1i	0	1
	-837.9071827	н	2
00000(1)		C	1

С	-2.074379	-0.698712	-0.670152
С	-2.543229	0.347057	0.035297
С	-0.129944	0.413956	-0.435562
Ν	-0.695766	-0.722090	-0.902586
S	-1.253249	1.440287	0.465727
н	-2.675775	-1.514492	-1.052976
Н	-3.567390	0.561011	0.304104
С	1.247288	0.584338	-0.371575
0	1.943727	-0.089839	-1.359112
Н	2.890141	0.017914	-1.207216
С	1.888113	1.837447	0.147472
Н	1.332491	2.245249	0.995234
Н	2.906366	1.627997	0.496397
Н	1.946982	2.602136	-0.636769
С	0.060938	-2.239134	-0.041765
Н	-0.796927	-2.900470	-0.120468
Н	0.843115	-2.417166	-0.774769
С	0.437879	-1.729840	1.214289
Н	-0.323433	-1.650303	1.987890
С	1.553501	-0.907798	1.273107
Н	1.754548	-0.330019	2.173013
Н	2.421415	-1.156997	0.668265

E	-839.403342
E+ZPE	-839.224361
н	-839.212119
G	-839.262429
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A
E _{UCCSD(T)}	-837.9986923

С	-1.979712	1.419117	0.682960
С	-2.746096	0.661713	-0.151043
С	-0.466722	-0.109119	0.199215
Ν	-0.694751	0.975299	0.874470
S	-1.829378	-0.672083	-0.729453
Н	-2.309536	2.320433	1.183798
Н	-3.771880	0.818609	-0.450693
С	0.834073	-0.887740	0.262455
0	0.649962	-1.796959	1.346848
Н	1.463262	-2.305109	1.460662
С	1.086978	-1.668960	-1.027598
Н	1.107436	-1.010121	-1.899428
Н	2.051837	-2.184435	-0.962188
Н	0.309144	-2.424731	-1.169717
С	2.043438	2.299906	-0.554227
Н	2.323403	2.938004	-1.386561
Н	1.483303	2.748774	0.261797
С	2.359945	1.006075	-0.533300
Н	2.911143	0.580466	-1.371844
С	1.997492	0.070411	0.587305
Н	2.864298	-0.560216	0.830711
Н	1.724809	0.631817	1.484042

E	-839.140660
E+ZPE	-838.961039
н	-838.948377
G	-839.000489
<s<sup>2></s<sup>	0.7657
imaginary freq.	N/A
E _{UCCSD(T)}	-837.7300819

 $\mathbf{2a^{+}}$ cation doublet, optimized in gas phase

-
3-5 2 3

С	-0.448343	-1.920005	-0.330741
С	0.750514	-2.422840	0.049072
С	0.715753	0.039640	-0.116970
Ν	-0.475169	-0.552212	-0.442778
S	1.900377	-1.167642	0.298729
Н	-1.346735	-2.481952	-0.548520
Н	1.015528	-3.460604	0.189414
С	1.015513	1.400580	-0.077289
0	0.027829	2.260575	-0.344394
Н	0.331894	3.179219	-0.308722
С	2.356717	1.951175	0.269195
Н	3.110864	1.176549	0.405698
Н	2.703092	2.615494	-0.530554
Н	2.295091	2.532284	1.196624
С	-1.739185	0.143321	-0.808777
Н	-1.483599	0.974726	-1.463962
Н	-2.322579	-0.579770	-1.382143
С	-2.489118	0.586237	0.415526
Н	-2.006169	1.338893	1.034565
С	-3.692129	0.111355	0.727953
Н	-4.224434	0.459825	1.606215
Н	-4.193776	-0.628297	0.108504

E	-839.076275
	929 001299
	-030.901200
Н	-838.888470
G	-838.940465
<s<sup>2></s<sup>	0.7869
imaginary freq.	133.4i
E _{UCCSD(T)}	-837.6698215

С	1.206977	-0.674550	1.385659
С	1.212150	-1.744782	0.507229
С	-0.694491	-0.271956	0.340750
Ν	0.173462	0.174250	1.268691
S	-0.185954	-1.745194	-0.462628
Н	1.982980	-0.484227	2.117944
Н	1.939476	-2.543922	0.442086
С	-1.889258	0.387170	0.041404
0	-2.076237	1.535887	0.654198
Н	-2.938723	1.929180	0.449346
С	-2.922941	-0.105252	-0.908532
Н	-2.656666	-1.063776	-1.352779
Н	-3.876542	-0.226984	-0.381722
Н	-3.069917	0.623968	-1.713315
С	1.309822	2.053875	0.106694
Н	0.413332	2.662840	0.111547
Н	1.947142	2.118594	0.982432
С	1.722477	1.347200	-1.024480
Н	1.099165	1.365628	-1.915267
С	2.861494	0.582652	-1.017339
Н	3.171349	0.012544	-1.886270
Н	3.521948	0.576267	-0.154680
E	-839.077129		
-----------------------	-------------		
E+ZPE	-838.902542		
н	-838.888746		
G	-838.943617		
<s<sup>2></s<sup>	0.7943		
imaginary freq.	N/A		
E _{UCCSD(T)}	-837.672236		

[6a 7a]⁺ cation doublet, optimized in gas phase

С	-1.073959	0.616279	1.493393
С	-1.228730	1.600500	0.509372
С	0.770991	0.263352	0.354726
Ν	0.012216	-0.139226	1.384422
S	0.102307	1.619629	-0.533634
Н	-1.786449	0.440195	2.290902
Н	-2.017635	2.337854	0.430550
С	1.992896	-0.338276	0.028393
0	2.323859	-1.382381	0.742715
Н	3.190755	-1.744634	0.500456
С	2.903858	0.120794	-1.054445
Н	2.513861	0.984580	-1.591545
Н	3.874148	0.393674	-0.623465
Н	3.066772	-0.692160	-1.771015
С	-1.463266	-2.185141	-0.173693
Н	-0.659861	-2.856621	-0.454246
Н	-1.898962	-2.320952	0.811361
С	-1.954579	-1.235943	-1.044348
Н	-1.509924	-1.146139	-2.033152
С	-2.982198	-0.367830	-0.697288
Н	-3.373561	0.358670	-1.400504
Н	-3.502523	-0.477308	0.249456

2'a singlet anion, optimized in gas phase

E	-838.795234	С
	000 (01100	С
E+ZPE	-838.631182	С
Н	-838.618600	Ν
c	838 660133	S
U	-838.009432	Н
<s<sup>2></s<sup>	0.0000	Н
	N / A	С
imaginary freq.	N/A	0
E _{UCCSD(T)}	-837.3850201	С
F		Н
■MS-CASPT2		Н
state 1	-837.2309448	Н
		С
state 2	-837.1857585	Н
state 3	-837.1073580	Н
	007 0407500	С
state 4	-83/.042/500	Н
state 5	-837.0239410	С

С	1.002232	1.271063	-1.107952
С	0.395479	2.270718	-0.448143
С	-0.748694	0.057553	-0.175617
Ν	0.476715	-0.005337	-0.925759
S	-0.884951	1.672236	0.627266
Н	1.864274	1.385524	-1.759850
Н	0.641494	3.322473	-0.505158
С	-1.642785	-0.987514	-0.147114
0	-1.450254	-2.109690	-0.732603
С	-2.916251	-0.832211	0.677031
Н	-3.137601	0.206871	0.946191
Н	-3.746994	-1.238638	0.090197
Н	-2.844584	-1.423923	1.598178
С	1.405447	-1.082252	-0.566183
Н	0.793875	-1.993577	-0.567804
Н	2.172594	-1.166873	-1.348848
С	2.052533	-0.853329	0.770384
Н	1.359357	-0.586908	1.569713
С	3.364373	-0.918984	1.009235
Н	3.779089	-0.724752	1.994453
Н	4.068728	-1.171356	0.217976

E	-838.762719	С	1.153315	0.765522	-1.287603
		С	0.956795	1.870699	-0.526744
E+ZPE	-838.602766	С	-0.796239	0.138993	-0.381013
Н	-838.589995	Ν	0.245953	-0.263324	-1.159248
		S	-0.477334	1.707224	0.445770
G	-838.641462	Н	2.017187	0.617301	-1.928352
<s<sup>2></s<sup>	0.2320	Н	1.582322	2.751071	-0.474668
		C	-1.923702	-0.664814	-0.087867
imaginary freq.	478.31	0	-2.072330	-1.830562	-0.517062
EUCCSD(T)	-837.3509907	С	-2.983482	-0.082663	0.844484
		н	-3.116434	0.996530	0.712143
E _{ROCCSD(T)}	-837.3586414	Н	-3.927430	-0.596488	0.648448
E _{MS-CASPT2}		Н	-2.706888	-0.260593	1.891692
		C	1.369495	-1.730215	-0.222634
state 1	-837.2132451	Н	0.483859	-2.350057	-0.134733
state 2	-837.1587813	Н	2.014741	-1.947398	-1.072521
		С	1.950845	-1.139036	0.929719
state 3	-837.1265172	Н	1.303561	-1.056758	1.805248
state 4	-837.0864080	С	3.182472	-0.551770	1.001341
		н	3.512450	-0.026376	1.891499
state 5	-837.0334419	н	3 873950	-0 595340	0 162060

TS'a2-67 singlet anion, optimized in gas phase

38

E	-838.773130	С	1.564527	2.044406	0.000326
		С	2.858023	1.578382	-0.000376
E+ZPE	-838.614982	С	1.041809	-0.114821	0.000296
Н	-838.600705	Ν	0.560934	1.143890	0.000689
		S	2.840362	-0.167740	-0.000599
G	-838.657796	н	1.316843	3.103254	0.000603
<s<sup>2></s<sup>	1.0343	н	3.778512	2.143013	-0.000702
		С	0.269445	-1.308849	0.000453
imaginary freq.	N/A	0	-0.989906	-1.316889	0.000884
EUCCSD(T)	-837.3618775	С	1.030902	-2.629048	-0.000049
_		н	1.678884	-2.726357	0.881783
E _{MS-CASPT2}		н	0.301623	-3.441547	0.000904
state 1	-837.2098957	н	1.676924	-2.726738	-0.883282
		С	-2.912284	1.189510	0.000336
state 2	-837.1746500	н	-1.833305	1.057047	0.000734
state 3	-837.1631147	н	-3.326466	2.196853	0.000341
		С	-3.766107	0.089942	-0.000230
state 4	-837.0643345	н	-3.276161	-0.882428	-0.000180
state 5	-837.0500486	С	-5.144997	0.165108	-0.000821
		н	-5.764068	-0.725504	-0.001253

Н

-5.653786

1.126345

-0.000883

[6a 7'a] singlet anion, optimized in gas phase

[8a 4a] singlet anion	, optimized in	gas phase
-----------------------	----------------	-----------

E	-838.781623	С	0.085021	-2.236544
		С	0.899263	-1.489535
E+ZPE	-838.622182	С	-1.217144	-0.482223
Н	-838.608343	Ν	-1.085276	-1.676980
c .	000 660064	S	0.160888	0.010702
G	-838.663261	н	0.349378	-3.214713
<s<sup>2></s<sup>	0.0000	н	1.880894	-1.720815
		C	-2.339539	0.432517
imaginary freq.	N/A	0	-3.350372	0.106709
E _{UCCSD(T)}	-837.3722612	C	-2.176233	1.843439
_		н	-2.083942	1.832522
EMS-CASPT2		н	-3.049286	2.430783
state 1	-837.2303540	н	-1.262048	2.303219
	007 4770054	С	1.929181	1.813721
state 2	-837.1772954	н	1.767860	2.823012
state 3	-837.1664286	н	1.292977	1.469732
	007 0650604	С	3.044521	1.077465
state 4	-837.0659634	н	3.662188	1.545356
state 5	-837.0568384	C	3.441441	-0.190770
		Н	4.346629	-0.642137

Н

2.921979

-0.721414

0.181577 -0.662095 -0.028019 0.532566 -0.980692 0.567245 -1.043674 0.202063 0.809933 -0.340195 -1.431705 -0.054095 0.056178 0.608764 0.242965 1.421410 0.211563 -0.563197 0.605957 0.211092

1.399733

	• •	•		•	1	
1	= 01mg	of onion	optimized	110	and phone	•
1 3 42	-2 20021	EL AIHOIL.	ODUIIIIZEU		yas mas	5
-~	5 SB.		• p • • • • • • • •		8 p	-

E	-838.769056
E+ZPE	-838.607756
Н	-838.595493
G	-838.645084
<s<sup>2></s<sup>	0.0000
imaginary freq.	338.8i
E _{UCCSD(T)}	-837.3594471

C	-2.044335	-0.046014	-0.868553
С	-2.292577	0.964167	-0.007872
С	0.095466	0.450841	-0.410791
Ν	-0.717436	-0.405650	-1.075320
S	-0.806481	1.586778	0.669197
Н	-2.814552	-0.609533	-1.387208
Н	-3.256093	1.370041	0.269367
С	1.511757	0.441501	-0.556473
0	2.112267	-0.330921	-1.332568
С	2.345261	1.432545	0.249790
Н	1.759744	2.097362	0.890630
Н	3.047464	0.870026	0.873653
Н	2.934255	2.035301	-0.450285
С	-0.553505	-2.278683	-0.291399
Н	-1.525488	-2.683197	-0.564219
Н	0.265217	-2.517289	-0.963590
С	-0.251011	-2.024561	1.064744
Н	-1.080486	-1.967391	1.771770
С	0.975541	-1.552766	1.452319
Н	1.148732	-1.198760	2.465401
Н	1.829239	-1.620279	0.784526

5'a singlet anion,	optimized in	gas phase

E	-838.824313
E+ZPE	-838.660290
Н	-838.648229
G	-838.698086
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A
EUCCSD(T)	-837.4209169

С	-1.880462	-1.462278	0.816802
С	-2.671314	-0.826803	-0.095651
С	-0.467781	0.136783	0.256940
Ν	-0.634417	-0.909761	1.013579
S	-1.842395	0.546133	-0.743706
Н	-2.161330	-2.345019	1.382622
Н	-3.678454	-1.091286	-0.388062
С	0.734713	1.078664	0.092478
0	0.376088	2.160514	-0.604982
С	1.256902	1.405076	1.515850
Н	1.446999	0.514262	2.127377
Н	2.176166	1.994285	1.415789
Н	0.505532	2.025817	2.013884
С	2.330802	-2.195133	-0.693486
Н	2.703781	-3.089086	-0.200741
Н	1.893219	-2.317655	-1.682182
С	2.368813	-0.996941	-0.103819
Н	2.798068	-0.930014	0.897748
С	1.848618	0.274081	-0.694270
Н	2.659591	1.008331	-0.793092
Н	1.445224	0.095762	-1.698326

<u> </u>	- 1	1 1	1 /		• 1	•		1
1'0'	noutrol	doub	viot.	ontin	170d	111	and	nhaca
2 a	ncunai	uoui	nci.	opun	nzuu	111	205	Dhase
							0	

E	-838.764402
E+ZPE	-838.597790
н	-838.585344
G	-838.636869
<s<sup>2></s<sup>	0.7627
imaginary freq.	N/A
E _{UCCSD(T)}	-837.3520923

С	0.371239	1.930629	-0.320806
С	-0.838903	2.374334	0.075025
С	-0.699061	-0.103474	-0.134541
Ν	0.463169	0.567257	-0.469891
S	-1.949104	1.046360	0.303990
Н	1.243216	2.535797	-0.532238
Н	-1.143122	3.396686	0.234555
С	-0.885394	-1.516659	-0.111838
0	0.033764	-2.313910	-0.386895
С	-2.263725	-2.016751	0.276154
Н	-2.533125	-1.695562	1.288948
Н	-3.034036	-1.642559	-0.407531
Н	-2.250435	-3.105935	0.238639
С	1.733124	-0.085803	-0.823125
Н	1.504931	-0.924118	-1.481203
Н	2.325879	0.656055	-1.366370
С	2.471119	-0.560984	0.397488
Н	1.977627	-1.349743	0.961068
С	3.654621	-0.075883	0.766128
Н	4.170497	-0.446296	1.645784
Н	4.153812	0.701939	0.191989

	TS'a	2-84	cation	doublet,	optimized	in	gas	phase
--	------	------	--------	----------	-----------	----	-----	-------

E	-838.718938
E+ZPE	-838.556545
Н	-838.543980
G	-838.596081
<s<sup>2></s<sup>	0.7785
imaginary freq.	631.7i
E _{UCCSD(T)}	-837.312865

С	1.187980	-1.101150	1.117278
С	0.791356	-2.123819	0.316012
С	-0.698767	-0.197710	0.358401
Ν	0.369452	0.006202	1.129154
S	-0.687492	-1.734576	-0.479421
Н	2.091557	-1.094251	1.714903
Н	1.276568	-3.078266	0.169571
С	-1.724429	0.826404	0.135415
0	-1.601599	1.937130	0.630374
С	-2.900048	0.466694	-0.747092
н	-2.566405	0.286920	-1.775067
н	-3.393581	-0.443794	-0.392961
н	-3.607420	1.295388	-0.739844
С	1.514908	1.608956	0.571722
н	0.768946	2.338295	0.861703
Н	2.304373	1.411540	1.291666
С	1.782592	1.372588	-0.812952
Н	1.046945	1.739872	-1.527351
С	2.836108	0.653201	-1.267389
Н	2.977244	0.454724	-2.323826
Н	3.590073	0.271358	-0.583492

E	-838.742901
E+ZPE	-838.742901
Н	-838.567941
G	-838.624499
<s<sup>2></s<sup>	0.7834
imaginary freq.	N/A
E _{UCCSD(T)}	-837.3390849

[8a 4a]⁺ neutral doublet, optimized in gas phase

jeg -

С	-2.422249	0.453772	-0.930354
С	-2.367497	1.101286	0.274063
С	-0.725245	-0.646807	-0.073664
Ν	-1.492537	-0.528978	-1.117123
S	-1.100099	0.452178	1.227335
Н	-3.135779	0.667716	-1.715996
Н	-2.997640	1.901131	0.635493
С	0.430121	-1.605731	0.008438
0	0.744692	-2.257219	-0.959733
С	1.156037	-1.696987	1.329447
Н	1.567962	-0.717973	1.599064
Н	0.469785	-2.007320	2.124033
Н	1.964126	-2.421954	1.236970
С	1.350931	1.163790	-1.491351
Н	1.271884	0.504511	-2.346920
Н	0.565550	1.901605	-1.348779
С	2.397405	1.062060	-0.587701
Н	3.157386	0.305266	-0.778414
С	2.525882	1.844062	0.546725
Н	3.365267	1.731269	1.222283
Н	1.790954	2.608831	0.779018

UM06-2X-D3/		MS-CAS	PT2/aug-cc-pVD2	Z//M06-2X-D3/6-3	106-2X-D3/6-31+G(d,p)	
	6-31+G(d,p)	state 1	state 2	state 3	state 4	
-20	-839.3561398	-837.7962154	-837.6467762	-837.6229582	N/A	
-19	-839.3558932	-837.7961601	-837.6381522	-837.6209866	N/A	
-18	-839.3552057	-837.7956629	-837.6376224	-837.6211639	N/A	
-17	-839.3549536	-837.7948969	-837.6356363	-837.6176121	N/A	
-16	-839.3548935	-837.7954448	-837.6372189	-837.6214211	N/A	
-15	-839.3542467	-837.7949182	-837.6356995	-837.6188383	N/A	
-14	-839.3531392	-837.7938459	-837.6350433	-837.6209626	N/A	
-13	-839.3529401	-837.7942525	-837.6344087	-837.6190803	N/A	
-12	-839.3509736	-837.7928409	-837.6329394	-837.6203974	N/A	
-11	-839.3477478	-837.7903270	-837.6312553	-837.6232787	N/A	
-10	-839.3433600	-837.7866617	-837.6305980	-837.6263736	N/A	
-9	-839.3381770	-837.7822803	-837.6354619	-837.6247528	N/A	
-8	-839.3326000	-837.7781473	N/A	-837.6387895	-837.5793264	
-7	-839.3269730	-837.7726833	N/A	-837.6369340	-837.5745515	
-6	-839.3215578	-837.7678227	N/A	-837.6376824	-837.5777895	
-5	-839.3165239	-837.7635666	N/A	-837.6399647	-837.5833208	
-4	-839.3119521	-837.7600314	N/A	-837.6422983	-837.5898300	
-3	-839.3078451	-837.7567952	N/A	-837.6434286	-837.5949371	
-2	-839.3042009	-837.7546314	N/A	-837.6448430	-837.6023903	
-1	-839.3015457	-837.7526292	N/A	-837.6449398	-837.6071534	
0 (TSa ₂₋₆₇)	-839.3008120	-837.7506073	N/A	-837.6401447	-837.6121623	
1	-839.3012628	-837.7493858	N/A	-837.6399497	-837.6115341	
2	-839.3021297	-837.7483781	N/A	-837.6391148	-837.6122300	
3	-839.3030985	-837.7479207	N/A	-837.6393431	-837.6129218	
4	-839.3039980	-837.7475210	N/A	-837.6398346	-837.6135886	
5	-839.3047479	-837.7475212	N/A	-837.6402995	-837.6142844	
6	-839.3053781	-837.7469503	N/A	-837.6407882	-837.6148239	
7	-839.3058328	-837.7472398	N/A	-837.6410517	-837.6152938	
8	-839.3063276	-837.7468026	N/A	-837.6414207	-837.6157883	
9	-839.3066833	-837.7466974	N/A	-837.6416286	-837.6161009	
10	-839.3069647	-837.7464307	N/A	-837.6416415	-837.6163732	
11	-839.3071783	-837.7462467	N/A	-837.6417378	-837.6166271	
12	-839.3073553	-837.7460837	N/A	-837.6417033	-837.6167307	
13	-839.3074939	-837.7458840	N/A	-837.6416807	-837.6169120	
14	-839.3076047	-837.7457763	N/A	-837.6417030	-837.6169629	
15	-839.3076883	-837.7456001	N/A	-837.6416267	-837.6170364	
16	-839.3077498	-837.7455659	N/A	-837.6417646	-837.6171317	
17	-839.3077933	-837.7454137	N/A	-837.6416284	-837.6170952	
18	-839.3078246	-837.7454653	N/A	-837.6420011	-837.6173592	
19	-839.3078133	-837.7452409	N/A	-837.6414669	-837.6169754	
20	-839.3078571	-837.7454376	N/A	-837.6422123	-837.6175938	

Table S3. Absolute energies of IRC points of enol system.

	UM06-2X-D3/	06-2X-D3/ MS-CASPT2/aug-cc-pVDZ//M06-2X-D3/6-31+G(d,p)				
	6-31+G(d,p)	state 1	state 2	state 3	state 4	state 5
-20	-838.7931922	-837.2306288	-837.1810676	-837.1117937	-837.0216768	-837.0364374
-19	-838.7929702	-837.2302838	-837.1804615	-837.1107029	-837.0201957	-837.0357489
-18	-838.7926509	-837.2303900	-837.1811544	-837.1137003	-837.0232249	-837.0357921
-17	-838.7923274	-837.2297575	-837.1800820	-837.1116074	-837.0197263	-837.0347729
-16	-838.7921250	-837.2298804	-837.1805314	-837.1134201	-837.0220492	-837.0345486
-15	-838.7916359	-837.2296636	-837.1807303	-837.1151137	-837.0231301	-837.0343360
-14	-838.7911445	-837.2288155	-837.1786179	-837.1118670	-837.0194738	-837.0324261
-13	-838.7908746	-837.2289894	-837.1804603	-837.1162049	-837.0234757	-837.0332127
-12	-838.7903597	-837.2284017	-837.1786340	-837.1130823	-837.0204776	-837.0316648
-11	-838.7892247	-837.2274431	-837.1785873	-837.1155694	-837.0225050	-837.0305798
-10	-838.7889104	-837.2275862	-837.1775662	-837.1142412	-837.0213364	-837.0298600
-9	-838.7873270	-837.2266725	-837.1761922	-837.1157622	-837.0220641	-837.0283578
-8	-838.7848193	-837.2249348	-837.1743633	-837.1174480	-837.0227178	-837.0271146
-7	-838.7813984	-837.2223081	-837.1720355	-837.1206432	-837.0213220	-837.0296555
-6	-838.7774660	-837.2198081	-837.1704706	-837.1280448	-837.0465764	-837.0288026
-5	-838.7735053	-837.2169311	-837.1674850	-837.1294323	-837.0550963	-837.0290739
-4	-838.7699212	-837.2146800	-837.1646567	-837.1297131	-837.0655155	-837.0283584
-3	-838.7669825	-837.2132785	-837.1620009	-837.1284852	-837.0744945	-837.0284067
-2	-838.7647801	-837.2123953	-837.1596357	-837.1262337	-837.0803059	-837.0287869
-1	-838.7632902	-837.2121930	-837.1585684	-837.1261374	-837.0853806	-837.0311097
0 (TS'a ₂₋₆₇)	-838.7627186	-837.2132451	-837.1587813	-837.1265172	-837.0864080	-837.0334419
1	-838.7630809	-837.2141029	-837.1609258	-837.1288807	-837.0854997	-837.0364510
2	-838.7639028	-837.2147141	-837.1635917	-837.1350619	-837.0837214	-837.0394808
3	-838.7649031	-837.2154385	-837.1660554	-837.1412347	-837.0817470	-837.0421791
4	-838.7659098	-837.2159981	-837.1683597	-837.1468014	-837.0797424	-837.0446167
5	-838.7668499	-837.2165746	-837.1703215	-837.1513491	-837.0781296	-837.0467409
6	-838.7676786	-837.2170140	-837.1720906	-837.1563384	-837.0766469	-837.0485976
7	-838.7683505	-837.2172457	-837.1732281	-837.1595617	-837.0759844	-837.0499468
8	-838.7689023	-837.2173652	-837.1746817	-837.1632957	-837.0746312	-837.0513784
9	-838.7692406	-837.2174554	-837.1750332	-837.1641528	-837.0749365	-837.0519281
10	-838.7696749	-837.2175687	-837.1761534	-837.1673011	-837.0740700	-837.0529996
11	-838.7699370	-837.2175832	-837.1766790	-837.1688237	-837.0736028	-837.0535585
12	-838.7701592	-837.2173639	-837.1770765	-837.1703285	-837.0735893	-837.0539790
13	-838.7703206	-837.2176030	-837.1775849	-837.1716901	-837.0730086	-837.0543779
14	-838.7704272	-837.2176681	-837.1777224	-837.1725786	-837.0729767	-837.0546984
15	-838.7704866	-837.2173207	-837.1779221	-837.1730094	-837.0728223	-837.0545759
16	-838.7706675	-837.2171236	-837.1782246	-837.1740894	-837.0726181	-837.0551773
17	-838.7707661	-837.2175233	-837.1783197	-837.1744502	-837.0724172	-837.0550729
18	-838.7708483	-837.2172806	-837.1784143	-837.1749456	-837.0723639	-837.0553599
19	-838.7706781	-837.2180496	-837.1784856	-837.1755298	-837.0715838	-837.0551388
20	-838.7708967	-837.2176632	-837.1785754	-837.1756600	-837.0721055	-837.0558706
21	-838.7709581	-837.2181014	-837.1786597	-837.1761947	-837.0713067	-837.0552820
22	-838.7706316	-837.2176679	-837.1784783	-837.1763400	-837.0712006	-837.0556961
23	-838.7709072	-837.2180097	-837.1786445	-837.1767238	-837.0710494	-837.0558577
24	-838.7711930	-837.2180108	-837.1788471	-837.1774263	-837.0708778	-837.0558828
25	-838.7710363	-837.2184197	-837.1786414	-837.1773841	-837.0704475	-837.0551839
26	-838.7706872	-837.2177108	-837.1785660	-837.1777996	-837.0701542	-837.0561558
27	-838.7711426	-837.2181986	-837.1786711	-837.1779146	-837.0699732	-837.0552147
28	-838.7710287	-837.2178918	-837.1786460	-837.1785152	-837.0697819	-837.0561572
29	-838.7709153	-837.2175444	-837.1783280	-837.1784391	-837.0690899	-837.0546725
30	-838.7711709	-837.2183733	-837.1788098	-837.1794867	-837.0695510	-837.0551717

Table S4. Absolute energies of IRC points of enolate system.

31	-838.7707406	-837.2178766	-837.1785959	-837.1791951	-837.0694109	-837.0567127
32	-838.7703374	-837.2171724	-837.1777246	-837.1788371	-837.0680216	-837.0530573
33	-838.7711517	-837.2183431	-837.1790177	-837.1801423	-837.0691711	-837.0561213
34	-838.7705356	-837.2174573	-837.1776609	-837.1794930	-837.0678654	-837.0535747
35	-838.7705525	-837.2173527	-837.1781058	-837.1798105	-837.0680002	-837.0555388
36	-838.7713384	-837.2178907	-837.1784477	-837.1808378	-837.0682824	-837.0542211
37	-838.7713504	-837.2179740	-837.1791524	-837.1807983	-837.0688523	-837.0564950
38	-838.7712609	-837.2174111	-837.1784724	-837.1801825	-837.0687822	-837.0533422
39	-838.7710829	-837.2170836	-837.1788048	-837.1799054	-837.0687723	-837.0558341
40	-838.7711790	-837.2173714	-837.1788617	-837.1802990	-837.0691497	-837.0551147
41	-838.7710227	-837.2172410	-837.1785413	-837.1803459	-837.0688432	-837.0543839
42	-838.7711056	-837.2173351	-837.1790519	-837.1805135	-837.0689800	-837.0555594
43	-838.7714874	-837.2177042	-837.1792952	-837.1806527	-837.0695228	-837.0556185
44	-838.7715565	-837.2174428	-837.1792246	-837.1806341	-837.0693705	-837.0552133
45	-838.7713552	-837.2177047	-837.1791278	-837.1808064	-837.0691652	-837.0552314
46	-838.7713739	-837.2176692	-837.1790145	-837.1807537	-837.0689921	-837.0555760
47	-838.7714539	-837.2177997	-837.1791066	-837.1811598	-837.0690628	-837.0550424
48	-838.7716401	-837.2180327	-837.1793524	-837.1815351	-837.0686341	-837.0557130
49	-838.7716245	-837.2177761	-837.1789207	-837.1815524	-837.0687825	-837.0549727
50	-838.7715328	-837.2182834	-837.1795118	-837.1821881	-837.0687446	-837.0559438
51	-838.7717282	-837.2178110	-837.1792582	-837.1821848	-837.0683848	-837.0553436
52	-838.7718059	-837.2177721	-837.1793632	-837.1824855	-837.0684994	-837.0552320
53	-838.7718677	-837.2177068	-837.1795894	-837.1826750	-837.0685791	-837.0556331
54	-838.7719122	-837.2175143	-837.1792525	-837.1823800	-837.0686707	-837.0549140
55	-838.7719366	-837.2176803	-837.1796493	-837.1826743	-837.0685015	-837.0557325
56	-838.7719035	-837.2173864	-837.1791669	-837.1825292	-837.0688443	-837.0549592
57	-838.7718947	-837.2175602	-837.1792273	-837.1826121	-837.0680118	-837.0547548
58	-838.7718993	-837.2173841	-837.1793952	-837.1828100	-837.0682746	-837.0556826
59	-838.7719575	-837.2176726	-837.1789225	-837.1827938	-837.0683837	-837.0542843
60	-838.7720743	-837.2174723	-837.1793449	-837.1831890	-837.0678459	-837.0554145

-		
E		-1390.009029
E+ZPE		-1389.650551
Н		-1389.626874
G		-1389.702971
<s<sup>2></s<sup>		0.0000
imaginary fre	eq.	N/A

С	1.713603	2.222301	0.397604
C	1.401203	2.321592	-0.902981
с	-0.370929	1.154981	0.440173
Ν	0.789794	1.476091	1.196782
s	-0.118902	1.485553	-1.288966
С	2.897515	2.833652	1.081041
н	2.588634	3.306572	2.018161
н	3.667459	2.092231	1.320041
н	3.354999	3.593526	0.446439
С	1.422552	0.319920	1.898855
н	2.324999	0.699429	2.381520
н	0.755630	-0.008774	2.694333
С	1.776091	-0.804623	0.958186
Ν	1.298832	-2.883297	-0.151039
С	2.403359	-2.688994	-0.879784
С	2.714524	-3.734683	-1.907237
Н	1.881867	-3.827413	-2.610528
Н	3.621616	-3.480926	-2.455518
Н	2.846722	-4.707023	-1.423575
С	2.904134	-0.739271	0.166253
Н	3.592553	0.095219	0.279781
С	0.973311	-1.959531	0.768345
Ν	-0.115482	-2.224606	1.535541
Н	-0.724733	-2.961858	1.205270
Н	-2.384029	0.360129	2.678300
С	2.100442	3.040694	-2.010212
Н	3.044972	3.464108	-1.664821
Н	2.319482	2.352360	-2.833742
Н	1.481728	3.849988	-2.411659
С	-1.500203	0.649572	0.976652
0	-1.476990	0.373733	2.337927
С	-2.708552	0.223011	0.242200
С	-3.371045	-0.953706	0.630115
С	-3.247690	0.983298	-0.807181
С	-4.522370	-1.371956	-0.033947
Н	-2.980259	-1.548413	1.451515
С	-4.397116	0.560282	-1.469785
н	-2.783465	1.922157	-1.090943
С	-5.036390	-0.621218	-1.091047
Н	-5.015814	-2.288233	0.275282
H	-4.802236	1.164787	-2.275474
Н	-5.932722	-0.947811	-1.608817
Ν	3.243005	-1.657714	-0.759181
Н	-0.566729	-1.474018	2.046248

E	-1389.958651
E+ZPE	-1389.606414
н	-1389.582307
G	-1389.658640
<s<sup>2></s<sup>	0.4116
imaginary freq.	540.4i

 TSc_{2-67} neutral singlet, optimized with SMD mimicking the water solution

С	2.418823	1.611411	-0.251486
С	2.234560	0.848243	-1.373153
С	0.181564	1.391190	-0.117558
Ν	1.298302	1.893070	0.489519
S	0.540564	0.510104	-1.618729
С	3.756156	2.092054	0.230104
Н	3.623464	2.817210	1.035336
Н	4.361973	1.261841	0.611617
Н	4.318710	2.569091	-0.576831
С	1.728698	0.436814	2.256026
Н	2.759251	0.770272	2.301887
Н	1.042886	0.889290	2.961891
С	1.422146	-0.747678	1.569689
Ν	-0.187670	-2.331986	0.716745
С	0.766487	-2.761942	-0.125990
С	0.359074	-3.820971	-1.103542
Н	-0.517421	-3.492506	-1.669677
Н	1.172249	-4.043957	-1.794357
Н	0.081388	-4.737315	-0.572023
С	2.348267	-1.355116	0.699896
Н	3.382828	-1.017582	0.710605
С	0.118437	-1.354253	1.570347
Ν	-0.813471	-1.020502	2.503095
Н	-1.751234	-1.353022	2.311619
Н	-1.980209	2.242339	1.977392
С	3.253463	0.396284	-2.365395
Н	4.259645	0.573573	-1.978877
Н	3.150574	-0.673914	-2.573377
Н	3.150135	0.928630	-3.317528
С	-1.067976	1.465946	0.463587
0	-1.079863	1.985325	1.727657
С	-2.325278	0.941331	-0.074554
С	-3.327106	0.491998	0.807962
С	-2.584572	0.892375	-1.457036
С	-4.525679	-0.022198	0.321336
Н	-3.169332	0.526261	1.882238
С	-3.784246	0.376518	-1.936333
Н	-1.868535	1.298472	-2.163307
С	-4.757587	-0.092123	-1.052191
Н	-5.277992	-0.373286	1.020677
Н	-3.964588	0.355543	-3.006560
Н	-5.691847	-0.494716	-1.430126
Ν	2.044315	-2.360659	-0.126930
Н	-0.773778	-0.089237	2.900568

E	-1389.966893
E+ZPE	-1389.616306
Н	-1389.590578
G	-1389.673640
<s<sup>2></s<sup>	0.9995
imaginary freq.	N/A

С	-2.446947	-1.661145	-0.381575
С	-2.258554	-0.766087	-1.411203
С	-0.227242	-1.490198	-0.229871
Ν	-1.319980	-2.077287	0.261712
S	-0.570753	-0.421617	-1.587419
С	-3.787797	-2.167049	0.063440
Н	-3.681973	-2.721717	0.997582
Н	-4.484349	-1.339421	0.229182
Н	-4.233195	-2.831471	-0.683952
С	-2.072607	0.016578	2.549436
Н	-3.129775	-0.218482	2.487213
Н	-1.491555	-0.485635	3.313083
С	-1.523134	0.949933	1.660037
Ν	0.340688	2.201966	0.756513
С	-0.514426	2.737496	-0.130956
С	0.075136	3.674879	-1.138536
Н	0.742249	3.121777	-1.809377
Н	-0.706778	4.148552	-1.732261
Н	0.673813	4.444361	-0.643163
С	-2.305396	1.603842	0.689367
Н	-3.372353	1.390156	0.645832
С	-0.131878	1.322579	1.639478
Ν	0.733677	0.838088	2.565797
Н	1.716628	0.980692	2.366035
Н	1.918997	-2.534504	1.828870
С	-3.281690	-0.141810	-2.301195
Н	-4.279719	-0.476807	-2.009923
Н	-3.252433	0.950905	-2.232959
Н	-3.122953	-0.415363	-3.349505
С	1.041824	-1.625772	0.372110
0	1.021945	-2.280371	1.564456
С	2.292318	-1.041738	-0.089717
С	3.288179	-0.691194	0.846722
С	2.556014	-0.820691	-1.456555
С	4.480746	-0.108987	0.431324
Н	3.124119	-0.850749	1.909142
С	3.750048	-0.234886	-1.862639
Н	1.850281	-1.150144	-2.211273
С	4.715195	0.132746	-0.923287
Н	5.226398	0.164317	1.171265
Н	3.933235	-0.080156	-2.921326
Н	5.644937	0.590903	-1.244654
Ν	-1.830125	2.495425	-0.185190
Н	0.512362	-0.036700	3.023146

E	-1389.968095
E+ZPE	-1389.619399
Н	-1389.595008
G	-1389.672305
<s<sup>2></s<sup>	0.5944
imaginary freq.	381.9i

С	-3.395802	1.095878	-0.114271
С	-4.000520	-0.137424	-0.057960
С	-1.655553	-0.058055	0.661354
Ν	-2.084247	1.131679	0.296366
S	-2.875069	-1.311741	0.542497
С	-4.026719	2.374652	-0.571560
Н	-4.018406	3.111986	0.237043
Н	-3.462127	2.794208	-1.409728
Н	-5.058071	2.227152	-0.892940
С	1.023808	-3.058280	-0.371396
Н	0.057337	-3.503636	-0.593405
Н	1.772506	-3.706541	0.071827
С	1.352729	-1.833950	-0.967681
Ν	2.905202	-0.020266	-1.405990
С	1.878979	0.655931	-1.946594
С	2.184344	2.014301	-2.495149
Н	2.523586	1.920172	-3.533681
Н	1.293069	2.644113	-2.484028
Н	2.982407	2.490768	-1.922596
С	0.384133	-1.018806	-1.591981
Н	-0.624797	-1.409250	-1.711976
С	2.668539	-1.234146	-0.904542
Ν	3.693122	-1.887090	-0.340824
Н	4.600670	-1.442907	-0.304199
Н	0.374683	-2.247947	1.034230
С	-5.394717	-0.537905	-0.422758
Н	-5.991790	0.341155	-0.670134
Н	-5.399737	-1.208419	-1.288084
Н	-5.885076	-1.058720	0.405101
С	-0.353909	-0.419076	1.147893
0	-0.268394	-1.679592	1.602074
С	0.785848	0.461467	1.324074
С	1.894065	-0.014409	2.062725
С	0.853701	1.758207	0.769867
С	3.020441	0.777068	2.237735
Н	1.858848	-1.007687	2.498477
С	1.986024	2.545726	0.961979
Н	0.020775	2.141762	0.195897
С	3.074022	2.063360	1.689395
Н	3.860821	0.393356	2.808336
Н	2.019661	3.540763	0.528221
Н	3.954984	2.681373	1.831789
Ν	0.628898	0.194523	-2.092751
Н	3.591603	-2.816281	0.038919

3c neutral singlet, o	optimized	with SMD	mimicking	the water so	olution
			1		

E	-398.202925
E+ZPE	-398.053043
Н	-398.043178
G	-398.086607
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.607592	-0.802620	0.004237
Н	2.800543	-1.877723	0.004520
Н	3.085285	-0.367127	0.889264
С	1.132676	-0.537522	-0.000482
Ν	-0.707291	1.017713	0.001213
С	-1.529248	-0.041168	-0.000089
С	-2.998003	0.260382	0.000817
Н	-3.259896	0.850496	0.883989
Н	-3.260497	0.853033	-0.880485
Н	-3.582341	-0.659747	-0.000384
С	0.184978	-1.533855	-0.004647
Н	0.503025	-2.574345	-0.008080
С	0.612174	0.782429	0.001553
Ν	1.440867	1.853900	0.038734
Н	1.042282	2.769652	-0.116774
Н	3.092984	-0.368241	-0.877433
Ν	-1.148957	-1.318447	-0.004051
Н	2.425261	1.735960	-0.154224

E	-991.823544
E+ZPE	-991.620972
н	-991.605994
G	-991.663916
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

4c neutral singlet, optimized with SMD mimicking the water solution

	2 002214	0 462755	0 107024
C	-2.895214	0.402/55	0.18/924
C	-2.632580	-0.825030	-0.230221
С	-0.687748	0.614262	0.049354
Ν	-1.790837	1.261133	0.326613
S	-0.938321	-1.032044	-0.427049
С	-4.252022	1.007829	0.493087
н	-5.032554	0.302363	0.202752
н	-4.352018	1.209183	1.564287
н	-4.414638	1.947560	-0.041738
С	-3.611729	-1.929089	-0.482025
н	-4.127190	-2.198734	0.444611
н	-4.364352	-1.608820	-1.208005
н	-3.119611	-2.821867	-0.871413
С	0.643057	1.276815	0.024182
0	0.707511	2.497143	-0.066560
С	1.876715	0.445026	0.068896
С	2.977310	0.857174	-0.693817
С	1.974479	-0.689283	0.884471
С	4.157868	0.123081	-0.662097
н	2.891667	1.741608	-1.317804
С	3.167438	-1.408653	0.928556
н	1.142620	-0.988673	1.514298
С	4.253125	-1.010081	0.149593
Н	5.003911	0.432715	-1.267022
Н	3.247759	-2.277411	1.573656
Н	5.177114	-1.579122	0.177941

E	-1389.969802
E+ZPE	-1389.619342
Н	-1389.594494
G	-1389.673609
<s<sup>2></s<sup>	0.7812
imaginary freq.	133.5i

TSc67-5 neutral singlet, optimized with SMD mimicking the water solution

С	-1.062183	2.008551	-0.237507
С	-1.805474	1.400515	-1.220154
С	0.486710	0.561235	-0.928289
Ν	0.220571	1.544094	-0.083435
S	-0.846975	0.180255	-2.001547
С	-1.523227	3.112782	0.662727
н	-0.990648	4.041730	0.433378
Н	-1.311084	2.856599	1.704965
Н	-2.593637	3.299450	0.564467
С	0.649208	-2.046472	0.832882
Н	0.911806	-2.839816	0.142540
Н	1.425919	-1.690774	1.499938
С	-0.666417	-1.594716	1.015771
Ν	-2.998869	-1.482350	0.377460
С	-3.138231	-0.479197	1.254249
С	-4.479226	0.182009	1.348487
Н	-5.128299	-0.130976	0.530197
Н	-4.363891	1.270065	1.326535
Н	-4.959208	-0.078269	2.298283
С	-0.976409	-0.581330	1.944283
Н	-0.187073	-0.214887	2.598696
С	-1.794006	-2.048013	0.247600
Ν	-1.688422	-3.096500	-0.600888
Н	-2.454838	-3.247797	-1.243401
Н	2.403676	-1.709068	-1.971905
С	-3.211295	1.655472	-1.661959
н	-3.674955	2.421773	-1.037847
Н	-3.818831	0.746685	-1.591771
Н	-3.245405	1.998847	-2.701222
С	1.683177	-0.195813	-1.004713
0	1.740069	-1.013655	-2.098558
С	2.899636	0.053405	-0.239630
С	4.152018	-0.269256	-0.797536
С	2.863764	0.593846	1.062474
С	5.326221	-0.048762	-0.081844
Н	4.217575	-0.668615	-1.804930
С	4.040985	0.810972	1.767586
н	1.907910	0.823053	1.518202
C	5.279389	0.493774	1.201734
Н	6.280882	-0.296231	-0.535683
Н	3.991835	1.222022	2.771288
н	6.195505	0.665261	1.757888
Ν	-2.182935	-0.035500	2.087042
Н	-0.776459	-3.406124	-0.904632

E	-1390.050781
E+ZPE	-1389.692817
н	-1389.668838
G	-1389.747039
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

5c neutral singlet, optimized with SMD mimicking the water solution

|--|

С	0.399938	2.800594	0.673349
С	-0.256446	3.009572	-0.508599
С	0.594716	0.747665	-0.151867
Ν	0.878385	1.511220	0.856919
S	-0.273606	1.534554	-1.427177
С	0.647914	3.805447	1.754597
Н	1.722814	3.934440	1.914946
Н	0.210230	3.463642	2.697669
Н	0.218485	4.777259	1.509008
С	0.074256	-1.461881	0.876834
Н	0.358784	-2.520497	0.879081
Н	0.338057	-1.051205	1.855384
С	-1.406918	-1.291580	0.667766
Ν	-3.518541	-1.945690	-0.278475
С	-4.055077	-0.862066	0.292740
С	-5.515588	-0.632691	0.046156
Н	-5.873450	0.226768	0.612885
Н	-6.090610	-1.518654	0.328963
Н	-5.688653	-0.454061	-1.019651
С	-2.085678	-0.225083	1.220046
Н	-1.544529	0.484746	1.843522
С	-2.206985	-2.174427	-0.100906
Ν	-1.713964	-3.317742	-0.641778
Н	-2.304167	-3.798237	-1.307707
Н	0.913170	-2.032958	-1.671740
С	-0.888069	4.253690	-1.051637
Н	-0.808296	5.065250	-0.326316
Н	-1.948409	4.096689	-1.269955
Н	-0.398890	4.574760	-1.976192
С	0.913563	-0.735386	-0.202474
0	0.515141	-1.166607	-1.500089
С	2.420162	-0.932035	-0.025969
С	3.262007	-0.521177	-1.068256
С	2.985475	-1.482930	1.125270
С	4.642195	-0.665380	-0.964278
Н	2.829895	-0.085787	-1.965540
С	4.371665	-1.626432	1.229842
Н	2.361533	-1.805568	1.951727
С	5.202407	-1.220580	0.188656
Н	5.280744	-0.342942	-1.780964
Н	4.797295	-2.058482	2.130275
Н	6.278786	-1.334027	0.272637
Ν	-3.399530	0.019122	1.051551
Н	-0.717912	-3.421431	-0.767640

2'c singlet anion,	optimized	with SN	/ID m	imic	king	g the w	ater	solutio	n
_					1	-02000	n	201020	

E	-1389.535283
E+ZPE	-1389.190165
Н	-1389.166857
G	-1389.242693
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.583890	2.301028	0.384221
С	1.204283	2.392425	-0.900930
С	-0.432426	1.099473	0.513728
Ν	0.755712	1.492714	1.222166
S	-0.252789	1.433633	-1.239777
С	2.768824	2.974283	1.008628
Н	2.492816	3.412483	1.972869
Н	3.592813	2.274452	1.187332
Н	3.146421	3.770384	0.365434
С	1.494110	0.377859	1.874928
Н	2.397341	0.801752	2.319391
Н	0.876255	0.003314	2.690840
С	1.862706	-0.729374	0.922774
Ν	1.421517	-2.840779	-0.139861
С	2.496048	-2.618171	-0.906432
С	2.812073	-3.669639	-1.927527
Н	1.974843	-3.778145	-2.623495
Н	3.710327	-3.408762	-2.487118
Н	2.960425	-4.636763	-1.438441
С	2.957862	-0.632902	0.092100
Н	3.617245	0.229403	0.169884
С	1.091099	-1.911839	0.773508
Ν	0.035134	-2.186178	1.583568
Н	-0.544908	-2.960289	1.284907
С	1.805774	3.174931	-2.023572
Н	2.728872	3.667722	-1.713064
Н	2.042649	2.514084	-2.865195
Н	1.112191	3.938053	-2.392880
С	-1.501421	0.509473	1.117728
0	-1.507555	0.175554	2.402022
С	-2.705351	0.105921	0.319585
С	-3.266441	-1.162974	0.528182
С	-3.347109	0.975469	-0.574318
С	-4.408386	-1.565824	-0.162449
Н	-2.802038	-1.838022	1.241841
С	-4.495066	0.578449	-1.259425
Н	-2.954567	1.977167	-0.721996
С	-5.026687	-0.697072	-1.063134
Н	-4.818485	-2.557334	0.006322
Н	-4.981555	1.272033	-1.939167
Н	-5.919757	-1.006232	-1.597619
Ν	3.298540	-1.554181	-0.833015
Н	-0.464857	-1.407988	2.024826

E	-1389.496932
E+ZPE	-1389.156149
н	-1389.132808
G	-1389.207512
<s<sup>2></s<sup>	0.0000
imaginary freq.	315.1 <i>i</i>

С	-2.327349	-1.669054	-0.149617
С	-2.087929	-1.024737	-1.329142
С	-0.108333	-1.353962	0.110392
Ν	-1.253498	-1.797877	0.710280
S	-0.400632	-0.619743	-1.493422
С	-3.676697	-2.166871	0.281913
Н	-3.576166	-2.792423	1.171291
Н	-4.353016	-1.338092	0.522391
Н	-4.149428	-2.761203	-0.504930
С	-1.884566	-0.303092	2.200430
Н	-2.913334	-0.644821	2.244306
Н	-1.249677	-0.616204	3.021698
С	-1.583888	0.842933	1.446149
Ν	0.058624	2.358249	0.525784
С	-0.841061	2.678160	-0.421932
С	-0.390583	3.649827	-1.472833
Н	0.577887	3.349784	-1.882281
Н	-1.119152	3.707551	-2.282626
Н	-0.269419	4.650348	-1.041689
С	-2.463020	1.355517	0.470586
Н	-3.500631	1.025457	0.466103
С	-0.290369	1.467793	1.451375
Ν	0.583016	1.249730	2.495029
Н	1.509212	1.616492	2.301581
С	-3.052938	-0.734095	-2.431766
Н	-4.077244	-0.919409	-2.099703
Н	-2.979730	0.312619	-2.746107
Н	-2.857643	-1.355677	-3.312717
С	1.122388	-1.338198	0.792863
0	1.195963	-1.652795	2.031557
С	2.379751	-0.882582	0.118064
С	3.331007	-0.185584	0.878632
С	2.680162	-1.178578	-1.219841
С	4.523897	0.249101	0.305413
Н	3.129802	0.011489	1.927181
С	3.879910	-0.755690	-1.789770
Н	1.990825	-1.770008	-1.813987
С	4.800804	-0.029223	-1.034030
Н	5.240879	0.800492	0.906275
Н	4.098750	-1.003896	-2.823960
Н	5.732305	0.304294	-1.480899
Ν	-2.115329	2.268621	-0.442382
Н	0.631385	0.280404	2.808076

E	-1389.508991
E+ZPE	-1389.169364
Н	-1389.144484
G	-1389.223649
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

C	-2.254074	-1.780975	0.278585
С	-1.943079	-1.478708	-1.034763
С	-0.105918	-1.321472	0.550378
Ν	-1.218605	-1.692243	1.154332
S	-0.279887	-1.092408	-1.163318
С	-3.633601	-2.136510	0.740213
Н	-3.631416	-2.341343	1.812191
Н	-4.328163	-1.310926	0.546655
Н	-4.014240	-3.017935	0.214320
С	-2.827472	1.364567	1.996348
Н	-3.885007	1.146056	1.876478
Н	-2.448100	1.453413	3.007402
С	-2.040600	1.612131	0.872230
Ν	0.121298	2.173704	-0.114879
С	-0.453928	2.133496	-1.339701
С	0.435070	2.429370	-2.513637
Н	1.315702	1.776527	-2.511025
Н	-0.104785	2.277020	-3.450363
Н	0.799215	3.463512	-2.489672
С	-2.502933	1.602666	-0.470843
Н	-3.555833	1.395169	-0.661830
С	-0.622870	1.907041	0.943868
Ν	-0.036072	2.006409	2.196823
Н	0.976420	1.957383	2.156957
С	-2.865523	-1.514631	-2.210071
Н	-3.843798	-1.114803	-1.926890
Н	-2.480772	-0.923952	-3.043984
Н	-3.009863	-2.543069	-2.559131
С	1.127472	-1.025469	1.297700
0	1.100748	-0.952620	2.527855
С	2.400580	-0.761445	0.562986
С	3.239264	0.250954	1.047512
С	2.797409	-1.518097	-0.546648
С	4.439537	0.533236	0.403298
Н	2.939767	0.819578	1.923058
С	4.010942	-1.246111	-1.176433
Н	2.185325	-2.342832	-0.897952
C	4.825249	-0.213628	-0.711941
Н	5.075337	1.332126	0.771277
Н	4.320315	-1.844795	-2.027083
Н	5.764198	0.003047	-1.211865
Ν	-1.744266	1.876055	-1.543102
н	-0.411734	1.349338	2.874998

[8c 4c] singlet anion, optimized with SMD mimicking the water solution

	-
E	-1389.505381
E+ZPE	-1389.166745
Н	-1389.141820
G	-1389.221459
<s<sup>2></s<sup>	0.8486
imaginary freq.	N/A

С	-2.520867	-1.606717	-0.264376
С	-2.306526	-0.832498	-1.376770
С	-0.288580	-1.472781	-0.086607
Ν	-1.405501	-1.975830	0.439852
S	-0.599692	-0.559557	-1.571328
С	-3.857404	-2.050945	0.249466
Н	-3.877329	-3.138694	0.368850
Н	-4.048858	-1.608980	1.233859
Н	-4.671805	-1.763947	-0.417194
С	-1.903346	0.218851	2.677936
Н	-2.962258	-0.015170	2.696002
н	-1.283598	-0.187405	3.468098
С	-1.396484	1.042848	1.670599
Ν	0.432114	2.189956	0.572105
С	-0.456874	2.643511	-0.328454
С	0.090210	3.490438	-1.436665
Н	0.834907	2.926107	-2.007737
Н	-0.706330	3.808625	-2.109762
Н	0.591328	4.375130	-1.030900
С	-2.218598	1.611249	0.673662
Н	-3.289580	1.415750	0.703144
С	-0.005916	1.402943	1.552295
Ν	0.889379	1.020326	2.511678
Н	1.856475	1.155078	2.236628
С	-3.275037	-0.264719	-2.364368
Н	-4.296626	-0.555126	-2.111613
Н	-3.229197	0.829896	-2.380027
Н	-3.065342	-0.617484	-3.380035
С	0.977515	-1.559904	0.592878
0	1.006115	-2.025577	1.790442
С	2.238270	-1.058728	-0.001323
С	3.279798	-0.682500	0.871718
С	2.484767	-0.969774	-1.385305
С	4.486191	-0.188519	0.385859
н	3.129352	-0.781613	1.942133
С	3.696150	-0.480314	-1.869423
Н	1.752263	-1.328020	-2.100014
С	4.699990	-0.072505	-0.989893
Н	5.264449	0.106543	1.083700
Н	3.859195	-0.431474	-2.942090
Н	5.640938	0.312437	-1.370278
Ν	-1.776097	2.413062	-0.296928
Н	0.729338	0.103662	2.920642

E	-1389.567319
E+ZPE	-1389.224238
н	-1389.200686
G	-1389.279095
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

5'c singlet anion, optimized with SMD mimicking the water solution

30.0
P 2
-9-9
- 37-3

С	-3.774303	-0.573715	1.119691
С	-4.366727	-0.385729	-0.096603
С	-1.911462	-0.461705	-0.103272
Ν	-2.383844	-0.612768	1.096721
S	-3.139823	-0.275566	-1.324833
С	-4.460002	-0.750016	2.439245
Н	-4.137486	0.022884	3.144086
Н	-4.204786	-1.721342	2.875087
Н	-5.544989	-0.693942	2.342265
С	0.384641	-1.265542	0.462852
Н	0.026638	-1.089416	1.480982
Н	0.158352	-2.309802	0.207707
С	1.873225	-1.039733	0.456806
Ν	4.041791	-1.168297	-0.590372
С	4.562144	-0.717052	0.558369
С	6.053642	-0.560270	0.594158
Н	6.384943	-0.224248	1.576840
Н	6.372609	0.167553	-0.158139
Н	6.538591	-1.511560	0.356622
С	2.533495	-0.571417	1.568599
Н	1.963178	-0.328978	2.463952
С	2.705945	-1.310685	-0.667369
Ν	2.161353	-1.745392	-1.823738
Н	2.787728	-1.782300	-2.618075
С	-5.819079	-0.309557	-0.453472
Н	-6.436635	-0.373407	0.444317
Н	-6.106793	-1.127561	-1.121360
Н	-6.054704	0.631525	-0.959529
С	-0.443301	-0.384776	-0.533547
0	-0.331067	-0.823448	-1.837230
С	0.021176	1.079690	-0.349935
С	0.682319	1.739705	-1.386796
С	-0.134749	1.744206	0.874398
С	1.173840	3.036787	-1.210874
Н	0.814398	1.230550	-2.335909
C	0.353387	3.037010	1.053633
Н	-0.638917	1.243713	1.697069
C	1.011396	3.690841	0.008686
H	1.685885	3.533083	-2.030350
Н	0.221957	3.534670	2.010169
Н	1.392903	4.697957	0.146940
Ν	3.871588	-0.391544	1.651152
Н	1.153091	-1.464978	-1.971270

-	-
E	-1390.460585
E+ZPE	-1390.088728
Н	-1390.064610
G	-1390.142224
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	0.984714	2.217084	0.386320
С	0.491035	2.440747	-0.840423
С	-0.904120	0.828948	0.495416
Ν	0.287162	1.232066	1.147259
S	-0.935514	1.433102	-1.179966
С	2.129241	2.926377	1.038643
Н	1.861649	3.211484	2.060711
Н	3.028728	2.305472	1.088759
Н	2.382466	3.830729	0.484076
С	1.131405	0.207808	1.800569
Н	1.702120	0.701010	2.591365
Н	0.473157	-0.515728	2.281691
С	2.117201	-0.501600	0.895878
Ν	2.693247	-2.050158	-0.901895
С	3.961623	-1.781627	-0.705532
С	5.008579	-2.382535	-1.576338
Н	5.122527	-1.757832	-2.468113
Н	5.968466	-2.432631	-1.060104
Н	4.698196	-3.379299	-1.888715
С	3.454150	-0.304219	1.062612
Н	3.865079	0.343038	1.829214
С	1.758005	-1.457615	-0.114231
Ν	0.505397	-1.838136	-0.321644
Н	0.315005	-2.521556	-1.044595
Н	-2.568297	-0.556395	2.751249
С	0.922852	3.415501	-1.886432
Н	1.845253	3.917887	-1.590050
Н	1.107154	2.901883	-2.836044
Н	0.153748	4.174277	-2.064162
C	-1.891181	0.106067	1.065054
0	-1.707187	-0.327851	2.371086
C	-3.096495	-0.390903	0.365526
C	-3.447671	-1.743950	0.490996
C	-3.919386	0.458944	-0.386550
C	-4.586/26	-2.239489	-0.139680
Н	-2.818942	-2.40/895	1.0/8801
C	-5.055889	-0.041123	-1.018/1/
Н	-3.6800/3	1.515360	-0.461431
C	-5.391425	-1.3906/5	-0.900655
н	-4.842/44	-3.289/80	-0.04015/
н	-5.68/488	0.628682	-1.594066
H	-6.2/8449	-1.//6/24	-1.393009
N	4.357746	-0.940902	0.273355
H	-0.273951	-1.448461	0.194695
Н	5.351757	-0.776885	0.416382

E	-1390.416621
E+ZPE	-1390.049950
н	-1390.026057
G	-1390.101108
<s<sup>2></s<sup>	0.3304
imaginary freq.	456.5i

С	2.375278	1.569151	-0.421353
С	2.171138	0.656741	-1.431434
С	0.145794	1.362235	-0.227093
Ν	1.274452	1.935751	0.297097
S	0.476100	0.309274	-1.622676
С	3.723165	2.101501	-0.038201
Н	3.612331	2.897906	0.699812
Н	4.350779	1.313400	0.394108
Н	4.247691	2.503066	-0.909304
С	1.780654	0.714651	2.208932
н	2.803120	1.073455	2.198814
Н	1.098394	1.212142	2.886031
С	1.487027	-0.527639	1.636562
Ν	-0.186107	-2.164501	0.915704
С	0.694350	-2.649047	0.056663
С	0.298017	-3.737051	-0.879829
Н	-0.572840	-3.413650	-1.455304
н	1.110170	-3.990093	-1.561842
Н	0.015712	-4.624754	-0.306964
C	2.386805	-1.161137	0.777460
Н	3.432201	-0.888051	0.703403
C	0.1//900	-1.154826	1./25896
N	-0.693810	-0./83506	2.659559
н	-1.618051	-1.19/31/	2.655847
н	-2.002869	2.36/48/	1.818236
	3.1/8551	0.083765	-2.370414
н	4.18841/	0.285098	-2.006432
	2.024111	-1.001009	-2.403030
	1 001246	1 4055970	-3.3/30/3
	-1.091240	1,495562 2 142447	1 55/993
c c	-1.03/212	2.142447 0 915/36	-0 124425
	-2.349834	0.913430	0.124420
c	-2 639505	0.442013	-1 /197375
c	-1 193199	-0 122796	0 3/97//
н	-3 110221	0.122/30	1 863909
c	-3 832346	0 274198	-1 936118
н	-1.952052	1,260005	-2.224516
c	-4.759931	-0.217084	-1.016133
н	-5.212412	-0.494304	1.072989
н	-4.043440	0.230895	-2.999867
н	-5.689080	-0.658823	-1.361700
N	1.973846	-2.224881	0.045414
н	-0.537099	0.026243	3.243733
Н	2.626896	-2.657970	-0.603892
•			

E	-1390.423761
E+ZPE	-1390.058333
Н	-1390.032992
G	-1390.112648
<s<sup>2></s<sup>	0.9647
imaginary freq.	N/A

С	-2.451950	-1.602856	-0.376511
С	-2.241786	-0.745664	-1.436463
С	-0.230886	-1.458331	-0.212058
Ν	-1.339222	-2.010090	0.292352
S	-0.545141	-0.444241	-1.621705
С	-3.806217	-2.064611	0.074262
Н	-3.705671	-2.710242	0.948279
Н	-4.439516	-1.212847	0.344137
Н	-4.320158	-2.622594	-0.714134
С	-2.068070	-0.050798	2.568060
Н	-3.119506	-0.302190	2.491098
Н	-1.487198	-0.542239	3.337126
С	-1.522828	0.888402	1.683729
Ν	0.384683	2.132699	0.772748
С	-0.409691	2.634303	-0.154316
С	0.148126	3.530981	-1.203163
Н	0.884915	2.973772	-1.789269
Н	-0.631750	3.905434	-1.866538
Н	0.659540	4.371278	-0.727689
С	-2.295751	1.489094	0.695358
Н	-3.359357	1.311352	0.589308
С	-0.124089	1.291072	1.692688
Ν	0.702427	0.862385	2.636709
Н	1.678789	1.128296	2.590790
Н	1.892867	-2.438989	1.898433
С	-3.250361	-0.143511	-2.358084
Н	-4.257519	-0.392035	-2.016037
Н	-3.161327	0.948104	-2.394385
Н	-3.133797	-0.518886	-3.380254
С	1.028320	-1.585772	0.403722
0	0.997290	-2.203333	1.611836
С	2.288228	-1.028440	-0.073771
С	3.270393	-0.627339	0.854925
С	2.568950	-0.888729	-1.446952
С	4.470480	-0.073275	0.422561
Н	3.090416	-0.724987	1.922161
С	3.770617	-0.331253	-1.870590
Н	1.871882	-1.260404	-2.190184
С	4.723523	0.087593	-0.940563
Н	5.207329	0.240920	1.154959
Н	3.969327	-0.239885	-2.933766
Н	5.659538	0.522775	-1.275426
Ν	-1.729892	2.361061	-0.172646
Н	0.423253	0.180706	3.328524
Н	-2.306132	2.769607	-0.905689

E	-1390.421575
E+ZPE	-1390.059160
Н	-1390.034788
G	-1390.112571
<s<sup>2></s<sup>	0.5993
imaginary freq.	583.6i

С	2.063528	-1.869619	-0.141733
С	2.772006	-1.085897	-1.027569
С	0.361215	-0.665990	-0.926105
Ν	0.716908	-1.626765	-0.090731
S	1.699596	-0.009970	-1.849515
С	2.645601	-2.953054	0.716977
Н	2.723105	-3.891269	0.157368
Н	2.002323	-3.127188	1.581914
Н	3.643824	-2.690784	1.074504
С	-1.334246	3.088309	-0.267412
Н	-0.954269	3.906144	-0.868543
Н	-2.410555	3.020276	-0.139102
С	-0.512447	2.316272	0.563606
Ν	1.700019	1.543892	1.307195
С	1.117656	0.608957	2.031237
С	1.936891	-0.311651	2.863415
Н	2.855082	-0.563548	2.329455
Н	1.386115	-1.220014	3.112509
Н	2.209992	0.203044	3.791031
С	-1.038599	1.298404	1.359121
Н	-2.104697	1.131688	1.458475
С	0.944142	2.384452	0.571994
Ν	1.585662	3.284688	-0.152216
Н	2.598321	3.305026	-0.128043
Н	-1.260420	1.758630	-1.561549
С	4.236198	-1.104128	-1.325808
Н	4.738847	-1.835690	-0.690701
Н	4.688578	-0.123628	-1.147600
Н	4.423336	-1.373728	-2.369893
С	-0.948666	-0.133967	-1.143012
0	-0.987842	0.891115	-2.013993
С	-2.210455	-0.647911	-0.632955
С	-3.400982	-0.003481	-1.031664
С	-2.296208	-1.727641	0.272753
С	-4.630734	-0.415130	-0.528645
Н	-3.359169	0.816121	-1.740683
С	-3.531833	-2.132738	0.761777
Н	-1.394986	-2.234207	0.591991
С	-4.704107	-1.478353	0.371908
Н	-5.535234	0.094617	-0.845516
Н	-3.581113	-2.965007	1.457149
Н	-5.664615	-1.799691	0.761958
Ν	-0.227407	0.499324	2.084810
Н	1.103532	3.965908	-0.722790
Н	-0.638822	-0.255099	2.631533

E	-398.660414
E+ZPE	-398.496416
Н	-398.486629
G	-398.529815
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-2.634372	-0.805711	0.000002
Н	-2.825668	-1.879894	0.000001
Н	-3.107429	-0.367163	-0.885204
С	-1.162009	-0.539987	0.000001
Ν	0.681226	1.063314	-0.000002
С	1.526153	0.055246	-0.000002
С	2.993350	0.310240	0.000003
Н	3.254067	0.895960	0.884809
Н	3.561264	-0.620409	-0.000044
Н	3.254060	0.896048	-0.884746
С	-0.230274	-1.528649	-0.000001
Н	-0.479036	-2.583140	-0.000001
С	-0.645795	0.798327	-0.000001
Ν	-1.471554	1.838388	-0.000001
Н	-1.093415	2.777342	0.00000
Н	-3.107427	-0.367166	0.885211
Ν	1.097965	-1.220653	-0.000002
Н	1.783064	-1.972079	-0.000004
Н	-2.475262	1.716363	0.000004

E	-1390.423122
E+ZPE	-1390.058139
Н	-1390.033288
G	-1390.112579
<s<sup>2></s<sup>	0.7214
imaginary freq.	283.0i

С	-3.065647	1.219230	0.574918
С	-4.051653	0.440563	0.022668
С	-1.864656	-0.639862	0.312037
Ν	-1.844956	0.605228	0.740669
S	-3.426473	-1.147635	-0.304448
С	-3.195887	2.645926	1.011973
Н	-3.019867	2.730206	2.088903
Н	-2.449116	3.264644	0.504325
Н	-4.184719	3.049932	0.793091
С	-0.185642	-0.252628	-2.062161
Н	-1.168904	0.202766	-2.073402
Н	-0.063007	-1.192080	-2.585929
С	0.901640	0.492216	-1.574305
Ν	3.277174	0.682452	-1.005165
С	3.012523	1.795732	-0.346901
С	4.100052	2.505932	0.381416
Н	4.587667	1.805404	1.064308
Н	4.847357	2.856312	-0.335938
Н	3.715370	3.356152	0.946085
С	0.719610	1.700305	-0.918184
Н	-0.242775	2.189737	-0.840831
С	2.277901	0.027180	-1.623352
Ν	2.607322	-1.056626	-2.315970
Н	3.568418	-1.374370	-2.302153
Н	1.917688	-1.630850	-2.779603
С	-5.479373	0.769391	-0.277963
Н	-5.681275	1.819475	-0.060909
Н	-5.714476	0.588564	-1.331293
Н	-6.160700	0.160333	0.324744
С	-0.757649	-1.546361	0.230759
0	-1.112871	-2.750460	-0.293689
С	0.545137	-1.378478	0.855940
С	1.566267	-2.323353	0.617965
С	0.845988	-0.272954	1.680415
С	2.822700	-2.178954	1.194256
Н	1.406853	-3.164453	-0.051437
С	2.111077	-0.130871	2.242693
Н	0.084733	0.469093	1.877456
С	3.105482	-1.081198	2.010074
Н	3.589548	-2.919553	0.989866
Н	2.318151	0.731916	2.869551
Н	4.091221	-0.964668	2.449532
Ν	1.773852	2.323465	-0.334752
Н	1.617165	3.198483	0.160167
Н	-0.473774	-3.443731	-0.072825

E	-1390.506833
E+ZPE	-1390.135089
Н	-1390.111000
G	-1390.190313
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

5cN1H singlet cation, optimized with SMD mimicking the water solution

С	0.450606	2.805991	0.673472
С	-0.172916	3.027252	-0.524211
С	0.625485	0.750182	-0.148347
Ν	0.898060	1.507306	0.868427
S	-0.197569	1.552888	-1.443356
С	0.692746	3.806850	1.759548
Н	1.765739	3.911046	1.947614
Н	0.222575	3.477516	2.691312
Н	0.293052	4.787782	1.500524
С	0.079278	-1.446580	0.892954
Н	0.352033	-2.507188	0.915367
Н	0.332533	-1.025009	1.868670
С	-1.397956	-1.267675	0.666464
Ν	-3.526136	-1.944366	-0.316006
С	-4.089564	-0.885007	0.215539
С	-5.545932	-0.634750	0.034516
Н	-5.800908	0.403137	0.250997
Н	-6.100575	-1.285932	0.717225
Н	-5.833739	-0.883875	-0.987313
С	-2.055142	-0.198055	1.194662
Н	-1.571805	0.547261	1.816924
С	-2.201979	-2.163162	-0.114619
Ν	-1.703385	-3.264640	-0.661837
н	-2.312956	-3.867926	-1.199687
н	0.872559	-2.049604	-1.651278
С	-0.764789	4.283847	-1.082799
Н	-0.714515	5.085558	-0.344044
Н	-1.813919	4.139804	-1.356574
Н	-0.226239	4.610919	-1.977323
С	0.922815	-0.738034	-0.195014
0	0.506256	-1.167949	-1.484946
С	2.425754	-0.958436	-0.019708
С	3.269031	-0.600834	-1.079797
С	2.985547	-1.474202	1.150391
С	4.647159	-0.763978	-0.974175
Н	2.840727	-0.192784	-1.991432
С	4.369306	-1.636327	1.255952
Н	2.360044	-1.754617	1.991069
С	5.202399	-1.284018	0.197159
н	5.287791	-0.483742	-1.804608
н	4.791144	-2.040848	2.170769
н	6.277050	-1.412034	0.281946
Ν	-3.381444	-0.013858	0.962470
н	-0.718302	-3.484657	-0.615807
н	-3.851989	0.793094	1.365617

E	-1389.993950
E+ZPE	-1389.635135
Н	-1389.611843
G	-1389.687159
<s<sup>2></s<sup>	0.000
imaginary freq.	N/A

С	-1.527733	-2.342191	0.386918
С	-1.148502	-2.433651	-0.898249
С	0.475372	-1.110021	0.506562
Ν	-0.704694	-1.522533	1.219535
S	0.301139	-1.466404	-1.241606
С	-2.702134	-3.026933	1.018322
Н	-2.417017	-3.456889	1.983501
Н	-3.534991	-2.337327	1.196491
Н	-3.070771	-3.830657	0.379685
С	-1.453413	-0.429431	1.884204
Н	-2.348713	-0.862529	2.333561
Н	-0.838438	-0.038034	2.693255
С	-1.849205	0.672712	0.934391
Ν	-1.441505	2.838410	-0.114361
С	-2.505260	2.651376	-0.860368
С	-2.897370	3.667115	-1.876756
Н	-2.204111	3.604737	-2.720945
Н	-3.912451	3.498257	-2.237970
Н	-2.818445	4.664889	-1.442873
С	-2.949333	0.558058	0.142117
Н	-3.633834	-0.281779	0.182593
С	-1.079170	1.874968	0.774023
Ν	-0.006991	2.118125	1.517565
Н	0.516194	2.961238	1.313164
Н	0.476647	1.364618	2.033826
С	-1.739436	-3.231546	-2.015539
Н	-2.661535	-3.725678	-1.704516
Н	-1.974125	-2.581748	-2.866067
Н	-1.038959	-3.994865	-2.370852
С	1.525568	-0.483823	1.106418
0	1.499295	-0.118213	2.383758
С	2.727829	-0.066615	0.315709
С	3.277935	1.205907	0.532017
С	3.377439	-0.925486	-0.583168
С	4.415529	1.622815	-0.157451
Н	2.810394	1.872981	1.250864
С	4.520752	-0.513961	-1.267005
Н	2.996545	-1.931083	-0.734446
С	5.040524	0.765423	-1.064177
Н	4.817084	2.616748	0.017289
Н	5.013185	-1.199481	-1.950564
Н	5.930077	1.085956	-1.597767
Ν	-3.260078	1.539094	-0.750048
Н	-4.082799	1.438856	-1.339234

E	-1389.961275
E+ZPE	-1389.605973
н	-1389.582847
G	-1389.656181
<s<sup>2></s<sup>	0.0000
imaginary freq.	502.0i

С	2.252963	1.685803	-0.290843
С	2.015967	0.921487	-1.398066
С	0.041299	1.336899	0.024480
Ν	1.187196	1.850330	0.579096
S	0.341695	0.449105	-1.497503
С	3.590538	2.262332	0.070074
Н	3.474269	3.007027	0.860166
Н	4.279361	1.488209	0.429017
Н	4.055290	2.745354	-0.793284
С	1.837420	0.630247	2.136180
Н	2.850568	1.014038	2.184620
Н	1.179618	0.970982	2.927082
С	1.627795	-0.617389	1.518917
Ν	0.024934	-2.279614	0.709747
С	0.896682	-2.634705	-0.224116
С	0.537145	-3.678225	-1.227000
Н	1.301660	-3.764789	-2.000764
Н	0.424379	-4.645501	-0.727596
Н	-0.417869	-3.422890	-1.691195
С	2.533702	-1.135971	0.595264
Н	3.561752	-0.804652	0.514184
С	0.354021	-1.309654	1.572928
Ν	-0.509429	-1.058107	2.579205
Н	-1.426202	-1.479106	2.481300
Н	-0.517151	-0.124051	2.976871
С	2.976602	0.535363	-2.474768
Н	3.996955	0.800818	-2.189556
Н	2.940557	-0.546053	-2.651691
Н	2.739446	1.030928	-3.422097
С	-1.188234	1.371339	0.706491
0	-1.270930	1.798398	1.905226
С	-2.435121	0.840204	0.064289
С	-3.352551	0.139928	0.860108
С	-2.750009	1.072586	-1.281728
С	-4.532572	-0.359158	0.313106
Н	-3.136505	-0.010036	1.913673
С	-3.937824	0.585884	-1.825533
Н	-2.080775	1.660814	-1.902049
С	-4.826846	-0.141923	-1.033904
Н	-5.225377	-0.912848	0.939507
Н	-4.172143	0.784139	-2.866993
Н	-5.748675	-0.525464	-1.460177
Ν	2.150315	-2.140271	-0.226452
Н	2.804190	-2.476445	-0.929223

E	-398.136358
E+ZPE	-397.987704
н	-397.977729
G	-398.021178
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

8cN1H neutral singlet, optimized with SMD mimicking the water solution

С	2.607613	-0.862808	0.024665
Н	2.951683	-1.891711	0.020504
Н	3.360853	-0.088172	0.082715
С	1.249145	-0.595895	0.004688
Ν	-0.591283	1.058238	0.004098
С	-1.496446	0.068750	0.003726
С	-2.955521	0.377429	0.013948
Н	-3.222469	0.976870	-0.861568
Н	-3.550416	-0.538091	0.004964
Н	-3.214921	0.954199	0.906799
С	0.226552	-1.566080	-0.021634
Н	0.419170	-2.630125	-0.030843
С	0.702647	0.767246	-0.001032
Ν	1.574984	1.802030	0.031623
Н	1.203393	2.728583	-0.131458
Н	2.533151	1.642853	-0.245244
Ν	-1.083535	-1.196655	-0.016582
Н	-1.785546	-1.931557	-0.026008
E	-398.108987		
----------------------	-------------		
E+ZPE	-397.963973		
Н	-397.954933		
G	-397.997823		
<s<sup>2></s<sup>	0.0000		
imaginary freq.	1448.7i		

TScs-3N1H neutral singlet, optimized with SMD mimicking the water solution

|--|

С	2.649816	-0.659775	-0.012198
Н	3.104017	-0.494390	0.974353
Н	3.025616	-1.592937	-0.439679
С	1.183383	-0.595123	0.050214
Ν	-0.633978	1.100662	0.012396
С	-1.497302	0.100446	-0.002233
С	-2.962488	0.384079	0.028336
Н	-3.205467	1.131426	-0.729682
Н	-3.549344	-0.518097	-0.150330
Н	-3.230075	0.793607	1.006579
С	0.224475	-1.554226	-0.018022
Н	0.415234	-2.619873	-0.050846
С	0.683602	0.781645	0.026737
Ν	1.671141	1.647999	-0.034198
Н	1.469096	2.624469	-0.219768
Н	2.571875	0.880406	-0.293420
Ν	-1.104870	-1.182967	-0.043999
Н	-1.815917	-1.906743	-0.073605

F	-398.182582
E+ZPE	-398.031888
Н	-398.022345
G	-398.065410
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-2.683672	-0.722661	0.000000
Н	-2.897479	-1.794177	0.00000
Н	-3.152267	-0.270094	-0.880069
С	-1.207459	-0.478297	0.00000
Ν	0.693937	1.085264	-0.00000
С	1.492612	0.057269	-0.00000
С	2.977422	0.232927	0.00000
Н	3.411447	-0.241806	0.884843
Н	3.411447	-0.241807	-0.884843
Н	3.224611	1.293207	-0.00000
С	-0.310722	-1.486505	0.00000
Н	-0.588526	-2.534239	0.00000
С	-0.694328	0.892439	-0.00000
Ν	-1.511761	1.896793	0.00000
Н	-0.961763	2.757580	0.00000
Н	-3.152267	-0.270094	0.880069
Ν	1.040140	-1.222438	-0.00000
Н	1.705461	-1.986930	-0.00000

E	-1389.980490
E+ZPE	-1389.626979
н	-1389.602796
G	-1389.680295
<s<sup>2></s<sup>	0.0000
imaginary freq.	166.7i

С	3.654809	1.165255	0.376836
С	4.331743	-0.027088	0.404018
С	2.058587	-0.114477	-0.489632
Ν	2.374103	1.099750	-0.138957
S	3.329988	-1.279092	-0.256762
С	4.166368	2.496661	0.832660
Н	4.130618	3.216696	0.009455
Н	3.544294	2.887840	1.643655
Н	5.195610	2.434851	1.187470
С	0.087855	-1.373797	1.299463
Н	0.801420	-0.928242	1.986744
Н	0.373510	-2.313491	0.843462
С	-1.242654	-0.955803	1.357369
Ν	-3.516211	-1.032266	0.409173
С	-3.872005	-0.000441	1.179244
С	-5.258330	0.544605	1.107383
Н	-5.490645	0.828359	0.077246
Н	-5.977369	-0.219471	1.417436
Н	-5.371711	1.418982	1.750395
С	-1.709058	0.100558	2.144369
Н	-1.091688	0.621251	2.864490
С	-2.266086	-1.487209	0.461389
Ν	-1.942960	-2.520245	-0.345254
Н	-2.605644	-2.749978	-1.075520
Н	-0.966961	-2.654853	-0.579605
С	5.718872	-0.330726	0.876129
Н	6.157918	0.543235	1.359772
Н	5.718725	-1.152820	1.597676
Н	6.364857	-0.619369	0.041048
С	0.799290	-0.579162	-1.135690
0	0.833377	-1.674333	-1.729548
С	-0.355671	0.345411	-1.312110
С	-1.246867	0.072515	-2.361360
С	-0.628565	1.421627	-0.453894
С	-2.378618	0.859155	-2.555392
Н	-1.045321	-0.764455	-3.022434
С	-1.764588	2.204368	-0.646550
Н	0.031131	1.625397	0.380548
С	-2.645457	1.925160	-1.692581
Н	-3.056115	0.636801	-3.373974
Н	-1.970960	3.024583	0.034824
Н	-3.533840	2.533403	-1.834456
Ν	-2.994798	0.534498	2.029868
Н	-3.293326	1.319591	2.602611

E	-1390.038420
E+ZPE	-1389.680604
н	-1389.657097
G	-1389.734899
<s<sup>2></s<sup>	0.0000
imaginarv freq.	N/A

С	-3.766602	-0.640176	-1.110155
С	-4.375246	-0.406417	0.090886
С	-1.927670	-0.463859	0.129576
Ν	-2.377889	-0.667477	-1.069070
S	-3.165039	-0.227249	1.325779
С	-4.436740	-0.876196	-2.427669
Н	-4.105424	-0.135172	-3.161708
Н	-4.176669	-1.866236	-2.815316
Н	-5.522462	-0.815779	-2.344205
С	0.373448	-1.342404	-0.317077
Н	0.011348	-1.307432	-1.347289
Н	0.158118	-2.343542	0.077241
С	1.858566	-1.097966	-0.336028
Ν	4.056099	-1.037128	0.762560
С	4.592607	-0.779938	-0.396929
С	6.067893	-0.596815	-0.539679
Н	6.449385	-1.202290	-1.365981
Н	6.286119	0.452915	-0.759276
Н	6.566893	-0.879953	0.385573
С	2.494220	-0.824031	-1.497677
Н	1.983339	-0.739033	-2.450188
С	2.674079	-1.163509	0.871948
Ν	2.115057	-1.339611	2.032280
Н	2.818544	-1.359605	2.769230
Н	0.548269	-0.940860	2.094777
С	-5.831224	-0.329958	0.430659
Н	-6.435848	-0.403858	-0.474888
Н	-6.124149	-1.142874	1.102237
Н	-6.073945	0.615570	0.924222
С	-0.465737	-0.343740	0.526274
0	-0.408945	-0.660454	1.899998
С	0.003097	1.095359	0.259488
С	0.504492	1.886436	1.293359
С	-0.025201	1.614307	-1.041576
С	0.968922	3.179252	1.033918
Н	0.534590	1.493011	2.303862
С	0.436691	2.902142	-1.300236
Н	-0.407630	1.006563	-1.857435
С	0.936344	3.691245	-0.260827
Н	1.356197	3.782805	1.849397
Н	0.408718	3.290062	-2.314045
Н	1.297044	4.695266	-0.462007
Ν	3.853734	-0.648671	-1.527142
Н	4.319110	-0.452115	-2.406572

E	-1389.995282
E+ZPE	-1389.636609
Н	-1389.613586
G	-1389.688820
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-1.697996	2.310255	-0.428206
с	-1.222151	2.659783	0.775794
с	0.366098	1.180793	-0.522732
Ν	-0.860634	1.441488	-1.189062
s	0.358846	1.925901	1.094040
С	-2.975555	2.792519	-1.044875
н	-2.816302	3.049116	-2.096585
н	-3.769654	2.039539	-1.000477
н	-3.332294	3.682872	-0.525779
С	-1.573832	0.284339	-1.793021
н	-2.526143	0.662720	-2.164386
н	-1.015944	-0.072994	-2.653348
С	-1.815934	-0.840499	-0.816931
Ν	-1.243103	-3.029555	0.135557
С	-2.202114	-2.866411	1.001740
С	-2.487475	-3.897048	2.043615
н	-2.345002	-3.467203	3.039485
н	-3.525911	-4.231183	1.964925
н	-1.819698	-4.747121	1.916261
С	-2.802802	-0.757012	0.105535
н	-3.490482	0.078542	0.177045
С	-0.996207	-2.046982	-0.820754
Ν	-0.063332	-2.220703	-1.712093
н	0.406458	-3.111764	-1.556263
н	0.765812	-0.959325	-2.208162
С	-1.783593	3.589806	1.801308
н	-2.776496	3.935805	1.509419
н	-1.872492	3.085804	2.769655
н	-1.138330	4.463545	1.941601
С	1.396762	0.464271	-1.033746
0	1.285369	-0.076387	-2.304614
С	2.643680	0.122022	-0.313765
С	3.215087	-1.145301	-0.527800
С	3.312099	1.010493	0.544312
С	4.387865	-1.522360	0.120868
н	2.728375	-1.841340	-1.204728
С	4.489046	0.632626	1.189479
н	2.936748	2.018361	0.687162
С	5.029566	-0.637161	0.989122
н	4.801717	-2.511328	-0.052515
Н	4.990596	1.341878	1.841186
Н	5.944768	-0.929810	1.494250
Ν	-2.994296	-1.763482	1.013117
Н	-3.735920	-1.688468	1.701251

E	-1389.943070
E+ZPE	-1389.590945
Н	-1389.567675
G	-1389.642448
<s<sup>2></s<sup>	0.3262
imaginary freq.	514.9i

iTSc2-67N1H neutral singlet, optimized with SMD mimicking the water solution

С	2.433298	1.595669	-0.047597
С	2.191285	1.042438	-1.278669
С	0.200259	1.369117	0.147958
Ν	1.353389	1.746606	0.780849
S	0.479322	0.823586	-1.525560
С	3.799704	1.978408	0.440327
Н	3.722147	2.499101	1.396611
Н	4.434974	1.095811	0.578187
Н	4.300803	2.637593	-0.273912
С	1.958820	0.015984	2.257413
Н	2.995908	0.329085	2.242432
Н	1.352128	0.333986	3.094841
С	1.527291	-1.006142	1.413615
Ν	-0.319798	-2.325023	0.461276
С	0.472017	-2.653230	-0.524272
С	-0.006832	-3.521830	-1.640878
Н	0.373466	-3.162333	-2.600405
Н	0.354658	-4.544693	-1.491874
Н	-1.095787	-3.531203	-1.657384
С	2.315046	-1.443077	0.354851
Н	3.363642	-1.191581	0.247192
С	0.150159	-1.519873	1.484441
Ν	-0.598227	-1.217423	2.510849
Н	-1.514070	-1.653264	2.390800
Н	-0.807542	0.403177	2.496438
С	3.165201	0.740092	-2.367867
Н	4.187076	0.880359	-2.008404
Н	3.059841	-0.297876	-2.704834
Н	3.012140	1.387188	-3.238508
С	-1.023412	1.267298	0.786463
0	-1.029141	1.349573	2.150717
С	-2.306025	0.948133	0.149704
С	-3.301677	0.302245	0.908335
С	-2.601423	1.280521	-1.185931
С	-4.523169	-0.041567	0.336931
Н	-3.111529	0.066998	1.950190
С	-3.827016	0.939752	-1.750844
Н	-1.891880	1.847853	-1.779015
С	-4.790485	0.266572	-0.998013
Н	-5.270388	-0.550715	0.938082
Н	-4.034079	1.214475	-2.780611
Н	-5.744348	0.000037	-1.442150
Ν	1.783106	-2.279400	-0.568884
н	2.349280	-2.574327	-1.358889

E	-1389.954363
E+ZPE	-1389.602503
н	-1389.577497
G	-1389.656648
<s<sup>2></s<sup>	1.0480
imaginary freq.	N/A

С	-2.800834	-1.056303	0.751691
С	-2.597256	-1.679921	-0.456642
С	-0.562158	-1.032125	0.763879
Ν	-1.668371	-0.712066	1.433783
S	-0.893501	-1.845143	-0.748183
С	-4.135446	-0.741916	1.356411
Н	-4.075325	0.194999	1.915574
Н	-4.907777	-0.638972	0.591754
Н	-4.444124	-1.530946	2.050478
С	-2.983120	2.035019	-0.390697
Н	-3.686985	1.634649	-1.112880
Н	-3.362696	2.505959	0.505775
С	-1.610059	1.946104	-0.628334
Ν	0.740013	2.418390	0.002983
С	1.120022	1.845873	-1.104095
С	2.562406	1.784448	-1.492076
Н	2.876506	0.743104	-1.624153
Н	2.714741	2.307047	-2.441606
Н	3.173161	2.249455	-0.719811
С	-1.106577	1.349351	-1.772895
Н	-1.737711	0.914296	-2.538728
С	-0.614980	2.461217	0.344631
Ν	-1.003346	2.953219	1.472362
Н	-0.174613	3.246593	1.993293
Н	-0.283858	0.262572	2.628909
С	-3.592185	-2.174281	-1.455971
Н	-4.604117	-2.072385	-1.059872
Н	-3.530087	-1.605673	-2.390331
Н	-3.427251	-3.229315	-1.695330
С	0.700229	-0.639371	1.279461
0	0.654617	0.092652	2.420461
С	2.026355	-0.871969	0.748921
С	3.108494	-0.141488	1.288559
С	2.297589	-1.796920	-0.281494
С	4.396884	-0.312113	0.798104
Н	2.926903	0.571986	2.084353
С	3.590553	-1.956322	-0.768645
Н	1.518588	-2.429296	-0.689668
С	4.647377	-1.213068	-0.239295
Н	5.209994	0.268277	1.223345
Н	3.772806	-2.676151	-1.560433
Н	5.653986	-1.341571	-0.624029
Ν	0.240852	1.299852	-1.988111
Н	0.599124	0.853393	-2.825599

E	-1389.959984
E+ZPE	-1389.609453
н	-1389.586179
G	-1389.660859
<s<sup>2></s<sup>	0.0000
imaginary freq.	1135.3i

С	-3.311122	1.080323	-0.219668
С	-3.997740	-0.076811	0.037912
С	-1.595746	-0.135661	0.505925
Ν	-1.953884	1.029605	0.046027
S	-2.904972	-1.278342	0.649420
С	-3.878110	2.362497	-0.744687
Н	-3.719110	3.170599	-0.024030
Н	-3.378330	2.644715	-1.676391
Н	-4.948029	2.281771	-0.938857
С	0.941509	-3.073538	-0.569880
Н	-0.007014	-3.501400	-0.888512
Н	1.727244	-3.766060	-0.288741
С	1.293179	-1.810482	-1.048554
Ν	2.940042	0.008905	-1.401938
С	1.955350	0.779573	-1.773727
С	2.227361	2.172435	-2.244497
Н	2.421919	2.154074	-3.321939
Н	1.372593	2.826760	-2.057967
Н	3.109612	2.565657	-1.738795
С	0.298619	-0.878455	-1.364673
Н	-0.710885	-1.194541	-1.600055
С	2.688857	-1.298400	-0.987593
Ν	3.631846	-2.075517	-0.584260
Н	4.511639	-1.556065	-0.619295
Н	0.400733	-2.497141	0.659717
С	-5.453739	-0.383002	-0.120773
Н	-5.977504	0.474922	-0.545127
Н	-5.607497	-1.238454	-0.785070
Н	-5.914171	-0.620816	0.843062
С	-0.238974	-0.588776	0.872020
0	-0.202399	-1.809445	1.348933
С	0.854832	0.330181	1.256817
С	1.942765	-0.208859	1.969226
С	0.883455	1.689576	0.903036
С	3.035137	0.584226	2.297726
Н	1.927135	-1.255410	2.255334
С	1.982411	2.479754	1.240728
Н	0.052521	2.125352	0.363831
С	3.063283	1.932409	1.928428
Н	3.868226	0.150947	2.842643
Н	1.992320	3.526946	0.953435
Н	3.919037	2.550019	2.183080
Ν	0.663507	0.366622	-1.826173
Н	-0.060227	1.037910	-2.060700

E	-1389.958831
E+ZPE	-1389.608069
Н	-1389.584156
G	-1389.661406
<s<sup>2></s<sup>	0.8552
imaginary freq.	82.1i

 $iTSc_{67-5}N1H$ neutral singlet, optimized with SMD mimicking the water solution

С	-3.976841	0.897845	-0.459935
С	-4.479648	-0.361570	-0.242689
С	-2.137546	-0.009322	0.416643
Ν	-2.668442	1.092108	-0.082223
S	-3.251644	-1.363661	0.469660
С	-4.715833	2.057028	-1.055749
Н	-4.740926	2.893809	-0.350872
Н	-4.209522	2.402812	-1.962300
Н	-5.742257	1.796230	-1.315609
С	0.205767	-1.351210	-1.404541
Н	-0.339297	-0.840774	-2.191645
Н	-0.266574	-2.185495	-0.902616
С	1.552998	-1.040904	-1.172859
Ν	3.662018	-1.426817	0.046742
С	4.226847	-0.517096	-0.705014
С	5.669930	-0.176582	-0.527475
Н	6.092001	0.258387	-1.435297
Н	5.767068	0.551216	0.285114
Н	6.227664	-1.072448	-0.253074
С	2.224889	-0.077223	-1.901284
Н	1.766810	0.488113	-2.703429
С	2.300165	-1.642874	-0.053547
Ν	1.666908	-2.342634	0.840984
Н	2.318920	-2.666986	1.555141
Н	0.284478	-1.792034	1.320704
С	-5.843148	-0.913099	-0.516262
Н	-6.494633	-0.138409	-0.923909
Н	-5.801238	-1.735802	-1.237324
Н	-6.305598	-1.297173	0.398456
С	-0.811040	-0.199294	0.911786
0	-0.627774	-1.363021	1.577761
С	0.232014	0.815998	0.932351
С	1.292483	0.695329	1.853562
С	0.276881	1.876116	0.001669
С	2.353672	1.595867	1.843015
Н	1.282056	-0.112094	2.578643
С	1.337069	2.775791	0.003048
Н	-0.508402	1.969629	-0.738468
С	2.385003	2.641676	0.918309
Н	3.159146	1.479969	2.562408
Н	1.354835	3.577717	-0.729201
Н	3.215837	3.340399	0.908064
Ν	3.539525	0.180041	-1.643183
Н	4.026077	0.887938	-2.183842

E	-1389.956071
E+ZPE	-1389.608784
Н	-1389.584610
G	-1389.661737
<s<sup>2></s<sup>	0.9810
imaginary freq.	1063.7i

TSc67-84N1H neutral singlet, optimized with SMD mimicking the water solution

С	-1.539145	-1.409538	-1.087440
С	-1.160352	-2.218283	-0.047324
С	0.534285	-0.597852	-0.832889
Ν	-0.590705	-0.519801	-1.531230
S	0.476845	-1.850414	0.406993
С	-2.874749	-1.441614	-1.771108
Н	-2.844976	-2.080359	-2.660767
Н	-3.657664	-1.820085	-1.109415
Н	-3.153296	-0.434653	-2.092823
С	0.400080	1.672794	1.455306
Н	0.854737	1.203271	2.320488
Н	0.965076	2.414823	0.906528
С	-0.928044	1.378231	1.116413
Ν	-2.911253	1.798967	-0.272136
С	-3.588309	0.975275	0.493073
С	-5.047806	0.765538	0.262143
Н	-5.434778	-0.053893	0.869711
Н	-5.585744	1.682946	0.519304
Н	-5.224477	0.552792	-0.794314
С	-1.708322	0.506294	1.857185
Н	-1.344206	-0.025562	2.727625
С	-1.559930	1.928500	-0.089475
Ν	-0.827047	2.532164	-0.990697
Н	-1.391143	2.835492	-1.782413
Н	0.325624	2.007159	-1.295615
С	-1.943940	-3.253725	0.693261
Н	-2.901683	-3.429358	0.199324
Н	-1.407780	-4.206748	0.739034
Н	-2.143287	-2.935663	1.723657
С	1.590763	0.363080	-0.943210
0	1.357917	1.504377	-1.583746
С	2.933643	0.170255	-0.394360
С	3.701076	1.307225	-0.067484
С	3.514378	-1.099095	-0.205601
С	4.981278	1.176899	0.458238
Н	3.272215	2.292815	-0.217982
С	4.797032	-1.223297	0.321954
Н	2.982001	-1.994459	-0.509178
С	5.536106	-0.089537	0.663210
Н	5.548962	2.066776	0.713510
Н	5.226479	-2.212196	0.451287
Н	6.536015	-0.190336	1.073241
Ν	-3.010500	0.302082	1.514178
н	-3.566670	-0.361937	2.044722

C ·	
E	-1184.654198
E+ZPE	-1184.374904
Н	-1184.356533
G	-1184.421013
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-2.176883	-0.334776	0.004867
С	-1.696449	-1.646643	0.129312
С	0.121366	0.084820	-0.146250
Ν	-1.175210	0.610056	-0.197894
S	0.059048	-1.701595	-0.046581
С	1.258128	0.811565	-0.030981
0	1.126393	2.166145	0.244393
н	1.790063	2.663349	-0.256906
С	-1.490343	1.879470	-0.862975
н	-0.609150	2.174499	-1.435917
н	-2.303383	1.692868	-1.574079
С	-1.889031	2.969165	0.094351
н	-1.184439	3.186693	0.894966
С	-3.024417	3.657781	-0.016606
Н	-3.272561	4.457495	0.674918
Н	-3.738892	3.443188	-0.809365
С	-3.549058	-0.088635	0.057953
С	-2.556895	-2.719605	0.307336
С	-3.932691	-2.471126	0.368486
н	-4.620470	-3.297653	0.512139
С	-4.416616	-1.169372	0.240732
н	-5.484996	-0.983805	0.287028
Н	-2.171428	-3.730815	0.392748
Н	-3.934246	0.921614	-0.030201
С	2.621261	0.262711	-0.019570
С	2.994321	-0.829232	-0.819844
С	3.597176	0.857358	0.800150
С	4.290960	-1.337156	-0.769832
н	2.280908	-1.262708	-1.514627
С	4.893653	0.352196	0.840194
Н	3.331065	1.711390	1.415444
С	5.245797	-0.752505	0.062128
Н	4.558713	-2.180824	-1.398644
Н	5.630678	0.820106	1.485839
н	6.257010	-1.145526	0.095384

E	-1184.591385
E+ZPE	-1184.317915
Н	-1184.299210
G	-1184.364801
<s<sup>2></s<sup>	0.5697
imaginary freq.	617.3i

С	2.013513	-0.113319	-0.662955
С	1.702754	-1.351896	-0.053810
С	-0.198145	0.200057	-0.409360
Ν	0.969798	0.773688	-0.800850
S	-0.002723	-1.418086	0.337067
С	-1.419945	0.807097	-0.596479
0	-1.401590	1.983178	-1.292881
Н	-2.254978	2.434876	-1.208370
С	1.289165	2.129022	1.087967
Н	0.500170	2.789837	0.749471
Н	0.999802	1.263245	1.677487
С	2.636572	2.524839	1.062782
Н	2.889303	3.464185	0.574601
С	3.642251	1.726302	1.529596
Н	4.684701	2.016472	1.449685
Н	3.419248	0.775520	2.009172
С	3.334917	0.138747	-1.065435
С	2.671729	-2.326630	0.155581
С	3.977544	-2.061908	-0.266533
Н	4.745214	-2.815301	-0.121619
С	4.302561	-0.845597	-0.876908
Н	5.322610	-0.661383	-1.198577
Н	2.422089	-3.273800	0.623184
Н	3.578113	1.084665	-1.538709
С	-2.722486	0.266813	-0.187187
С	-2.905574	-0.348735	1.061255
С	-3.821719	0.385052	-1.055669
С	-4.151439	-0.858220	1.418472
Н	-2.085031	-0.395147	1.770981
С	-5.064678	-0.123402	-0.691839
Н	-3.694288	0.856531	-2.026371
С	-5.232816	-0.751861	0.543429
Н	-4.280009	-1.325435	2.389735
Н	-5.901570	-0.035509	-1.377466
Н	-6.202895	-1.148786	0.825275

E	-1184.604985
E+ZPE	-1184.332299
Н	-1184.312411
G	-1184.381558
<s<sup>2></s<sup>	1.0510
imaginary freq.	N/A

С	2.072553	1.024212	0.141237
С	1.894466	0.280569	-1.047098
С	-0.134534	0.801217	0.242680
Ν	0.926001	1.317133	0.840058
S	0.203534	-0.056781	-1.274627
С	-1.453348	0.978202	0.722821
0	-1.572401	1.870880	1.733375
Н	-2.450959	1.811023	2.140487
С	0.634927	-2.226846	1.514393
Н	-0.174503	-1.842474	2.125732
Н	0.379275	-2.882635	0.686649
С	1.956318	-1.910645	1.784056
Н	2.162056	-1.253581	2.628690
С	3.034153	-2.365757	1.039365
Н	4.052128	-2.093119	1.293582
Н	2.880714	-3.015988	0.182345
С	3.372057	1.386325	0.535939
С	2.974378	-0.112839	-1.838822
С	4.251868	0.251380	-1.426855
Н	5.109017	-0.044072	-2.023251
С	4.446377	0.995230	-0.248361
Н	5.454348	1.264653	0.050765
Н	2.823511	-0.690544	-2.745212
Н	3.515763	1.955922	1.448938
С	-2.654428	0.348902	0.182094
С	-2.652715	-0.990732	-0.248031
С	-3.855723	1.081001	0.124674
С	-3.815843	-1.569387	-0.745997
Н	-1.754285	-1.593045	-0.153466
С	-5.013887	0.493813	-0.373636
Н	-3.873570	2.119346	0.444653
С	-4.998059	-0.830581	-0.815134
Н	-3.801661	-2.606612	-1.065185
Н	-5.929423	1.074492	-0.424211
Н	-5.903112	-1.286248	-1.203846

[6d 7d] neutral singlet, optimized with SMD mimicking the water solution

E	-1184.586706
E+ZPE	-1184.318093
Н	-1184.299268
G	-1184.366434
<s<sup>2></s<sup>	0.6363
imaginary freq.	3071.8i

С	2.871095	0.850150	0.079017
С	3.132061	-0.514425	-0.169714
С	0.770027	0.158872	-0.081008
Ν	1.539539	1.202203	0.111781
S	1.627127	-1.365338	-0.352314
С	-0.665534	0.260839	-0.209067
0	-1.134703	1.454822	-0.468146
Н	-1.964461	1.777088	0.192386
С	-4.847077	2.474698	-0.537471
Н	-5.391864	3.048985	-1.279320
Н	-5.167627	1.451200	-0.354794
С	-3.807577	3.015811	0.152499
Н	-3.511995	4.039358	-0.073974
С	-3.026410	2.307922	1.116870
Н	-2.382956	2.872799	1.787588
Н	-3.411882	1.364266	1.502898
С	3.944950	1.735459	0.270072
С	4.434438	-1.015611	-0.232060
С	5.481740	-0.122969	-0.042107
Н	6.503744	-0.484951	-0.086592
С	5.237551	1.240900	0.207625
Н	6.076413	1.913790	0.352996
Н	4.622818	-2.066920	-0.423173
Н	3.747782	2.785361	0.462274
С	-1.609576	-0.841789	-0.080980
С	-1.341450	-1.999039	0.676700
С	-2.882206	-0.694251	-0.667464
С	-2.309631	-2.987557	0.811496
Н	-0.398902	-2.109470	1.201564
С	-3.844044	-1.687598	-0.528809
Н	-3.102648	0.200256	-1.242393
С	-3.559965	-2.840389	0.206213
Н	-2.093355	-3.868962	1.406554
Н	-4.816617	-1.562395	-0.994545
Н	-4.311984	-3.615128	0.317389

E	-117.845271	н	1.802777	0.150853	-0.879501
		С	-1.279136	-0.222140	0.000016
E+ZPE	-117.765256	Н	-2.240261	0.284141	0.000009
н	-117.760232	н	-1.289276	-1.310539	-0.000126
_		С	-0.131832	0.458996	-0.000002
G	-117.790256	н	-0.164642	1.548695	-0.000023
<s<sup>2></s<sup>	0.0000	С	1.231131	-0.164850	-0.000023
		Н	1.802871	0.151399	0.879239
imaginary freq.	N/A	Н	1.167552	-1.256585	0.000454

E		-1066.817026	С	2.406447
			С	2.222849
E+ZPE		-1066.622105	С	0.217180
Н		-1066.608292	Ν	1.249135
			S	0.533159
G		-1066.662966	С	-1.158009
<s<sup>2></s<sup>		0.0000	0	-1.261128
	~		С	3.695964
imaginary	freq.	N/A	С	3.301995
			С	4.567110
		00	н	5.423024
			С	4.763205
	н	5.768017		
				3.154462
				3.834038
	<u>)</u>		С	-2.346572
	O	V	С	-2.348395
			С	-3.501586
			С	-3.503420
	-	9 -3	н	-1.471050
	<u>)</u>	-0	С	-4.643430
	5	<u>``</u>	Н	-3.486790
			C	-1 611172

С	2.222849	-0.664584	-0.295400
С	0.217180	0.686240	0.005575
Ν	1.249135	1.368648	0.387366
S	0.533159	-0.930852	-0.591577
С	-1.158009	1.288266	-0.042513
0	-1.261128	2.494773	-0.201034
С	3.695964	1.066734	0.581046
С	3.301995	-1.529013	-0.512596
С	4.567110	-1.073740	-0.174816
Н	5.423024	-1.722265	-0.331214
С	4.763205	0.212652	0.368059
Н	5.768017	0.534545	0.620792
Н	3.154462	-2.520199	-0.927987
Н	3.834038	2.059685	0.996607
С	-2.346572	0.405606	0.061501
С	-2.348395	-0.731558	0.879602
С	-3.501586	0.766706	-0.645415
С	-3.503420	-1.503838	0.984215
Н	-1.471050	-0.994201	1.462588
С	-4.643430	-0.020592	-0.553789
Н	-3.486790	1.652728	-1.272765
С	-4.644172	-1.155420	0.261621
Н	-3.511235	-2.375368	1.630421
Н	-5.532621	0.247842	-1.114769
Н	-5.538305	-1.766491	0.335900

0.625648

0.243305

E	-1184.607028
E+ZPE	-1184.333940
н	-1184.315037
G	-1184.381710
<s<sup>2></s<sup>	0.8477
imaginary freq.	70.5i

3	
	30

С	-2.402381	0.752328	0.229648
С	-2.997086	-0.383851	-0.361408
С	-0.545941	-0.228054	-0.487136
Ν	-1.026423	0.814668	0.147589
S	-1.760185	-1.398827	-1.048801
С	0.827292	-0.528100	-0.760420
0	0.972645	-1.736871	-1.364516
С	3.394308	-1.435372	1.961462
Н	4.330979	-1.974674	1.873064
Н	3.441576	-0.373033	2.188067
С	2.178538	-2.067844	1.810831
Н	2.172863	-3.134436	1.590986
С	0.956657	-1.404692	1.873035
Н	0.017578	-1.938299	1.773039
Н	0.914889	-0.347480	2.119369
С	-3.215840	1.716463	0.846152
С	-4.379807	-0.575866	-0.348494
С	-5.168952	0.389871	0.266951
Н	-6.246367	0.262192	0.289382
С	-4.589649	1.526387	0.858789
Н	-5.228316	2.265063	1.332486
Н	-4.827753	-1.452334	-0.805565
Н	-2.761336	2.590886	1.301353
С	1.969733	0.348695	-0.604069
С	1.839230	1.695817	-0.194625
С	3.270385	-0.144805	-0.849911
С	2.959426	2.503567	-0.055635
Н	0.856977	2.101195	0.005221
С	4.385050	0.680648	-0.722962
Н	3.439045	-1.179785	-1.131779
С	4.239541	2.006354	-0.322456
Н	2.832382	3.535634	0.256390
Н	5.371297	0.273792	-0.923619
Н	5.109486	2.646598	-0.216989
Н	1.820432	-1.811073	-1.826093

E	-1184.691751
E+ZPE	-1184.411770
н	-1184.393886
G	-1184.458076
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.216902	-0.254567	0.646571
С	2.484574	-0.323018	-0.734468
С	0.242181	0.404217	-0.090542
Ν	0.930882	0.164508	0.973327
S	1.068759	0.165810	-1.623965
С	-1.224650	0.814156	-0.114008
0	-1.505840	1.411153	-1.366346
н	-1.189460	2.329228	-1.344984
С	-1.291013	4.224102	0.442784
Н	-0.692262	5.122660	0.325817
н	-2.349871	4.292622	0.200550
С	-0.755461	3.083324	0.883015
Н	0.307551	3.045239	1.118974
С	-1.532675	1.806142	1.031738
Н	-1.301261	1.323097	1.984862
Н	-2.608288	2.008140	0.994901
С	3.214473	-0.592883	1.569889
С	3.735306	-0.719503	-1.216381
С	4.712967	-1.054015	-0.287979
Н	5.691559	-1.368533	-0.636131
С	4.454667	-0.991503	1.093249
Н	5.238369	-1.258922	1.794557
Н	3.936704	-0.766764	-2.281578
Н	3.005545	-0.540273	2.633767
С	-2.085019	-0.444558	0.009590
С	-2.022871	-1.219178	1.174291
С	-2.937931	-0.836675	-1.024490
С	-2.806681	-2.363057	1.303836
Н	-1.357033	-0.934184	1.983566
С	-3.721288	-1.985628	-0.892774
Н	-2.994953	-0.247927	-1.932449
С	-3.659755	-2.751343	0.269086
Η	-2.749216	-2.951991	2.213993
Η	-4.379854	-2.278359	-1.704832
Н	-4.269480	-3.643850	0.369463

E	-1184.608455
E+ZPE	-1184.330878
Н	-1184.313512
G	-1184.374526
<s<sup>2></s<sup>	0.0000
imaginary freq.	511.6i

С	2.401765	0.161908	-0.472872
С	2.164638	-1.135357	0.006691
С	0.148297	0.244646	-0.396166
Ν	1.260026	0.963660	-0.632992
S	0.448210	-1.384756	0.256763
С	-1.118522	0.832579	-0.414823
0	-1.186698	1.944326	-1.243633
н	-2.006898	2.429774	-1.066710
С	1.355183	2.436290	0.719955
н	2.435319	2.432737	0.828543
н	0.952967	3.197253	0.057214
С	0.538836	1.946566	1.743179
н	0.975471	1.278621	2.483866
С	-0.834887	1.938407	1.543894
н	-1.484921	1.415665	2.240785
н	-1.293541	2.744206	0.977837
С	3.708369	0.572838	-0.745157
С	3.207003	-2.035077	0.222401
С	4.506939	-1.612852	-0.049514
н	5.333829	-2.297153	0.110665
С	4.754532	-0.319921	-0.529437
н	5.773506	-0.010846	-0.738890
н	3.013999	-3.036810	0.592869
н	3.892444	1.576033	-1.118266
С	-2.379619	0.068591	-0.237134
С	-2.596355	-0.759268	0.875210
С	-3.391537	0.174146	-1.203654
С	-3.779310	-1.483180	1.000767
Н	-1.851560	-0.817921	1.663409
С	-4.578657	-0.543775	-1.069252
Н	-3.245483	0.807834	-2.072824
С	-4.776098	-1.379315	0.029339
Н	-3.928177	-2.116553	1.869789
Н	-5.347603	-0.452134	-1.830210
Н	-5.700769	-1.938188	0.133176

2	ď	singlet	anion.	optimized	with SMD	mimicking	the	water solution
_	-							

E	-1184.176826
E+ZPE	-1183.910574
Н	-1183.892661
G	-1183.956183
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-2.121778	-0.353378	0.109809
С	-1.588647	-1.655715	0.084399
С	0.156715	0.161520	-0.137734
Ν	-1.181588	0.654890	-0.077864
S	0.139763	-1.635666	-0.288870
С	1.245414	0.950793	0.106373
0	1.146218	2.231451	0.415168
С	-1.566225	1.827422	-0.873225
н	-0.676135	2.146845	-1.421811
Н	-2.328352	1.532877	-1.607838
С	-2.082817	2.967268	-0.038673
н	-1.429962	3.301108	0.767174
С	-3.252239	3.569506	-0.253532
н	-3.579378	4.408898	0.353147
н	-3.918304	3.238832	-1.048629
С	-3.497227	-0.175007	0.269643
С	-2.401379	-2.769284	0.239508
С	-3.779278	-2.585289	0.416502
н	-4.424844	-3.448788	0.539028
С	-4.316277	-1.299340	0.422588
н	-5.385170	-1.159919	0.551844
н	-1.978256	-3.768923	0.207562
н	-3.921005	0.823990	0.285456
С	2.619738	0.365791	0.045662
С	3.015948	-0.561162	-0.929056
С	3.571080	0.779464	0.992687
С	4.310729	-1.082911	-0.938885
н	2.320371	-0.855034	-1.710774
С	4.861954	0.257513	0.986811
н	3.284951	1.511853	1.741919
С	5.237723	-0.680766	0.021716
Н	4.597317	-1.793237	-1.708929
Н	5.577738	0.582112	1.736506
н	6.245595	-1.084349	0.013414

E	-1184.128442
E+ZPE	-1183.867146
Н	-1183.848890
G	-1183.914035
<s<sup>2></s<sup>	0.4377
imaginary freq.	637.4i

TS'd2-67 singlet anion, optimized with SMD mimicking the water solution

С	1.989712	-0.168700	-0.633572
С	1.614539	-1.369800	0.011073
С	-0.215228	0.263198	-0.421982
Ν	0.990480	0.779551	-0.782050
S	-0.087290	-1.324984	0.422218
С	-1.426059	0.932167	-0.661354
0	-1.475407	2.052471	-1.291871
С	1.393625	2.103044	0.911398
Н	0.579470	2.750986	0.606929
н	1.144483	1.292411	1.593109
С	2.728086	2.574850	0.881040
н	2.925004	3.492424	0.326792
С	3.784536	1.899760	1.416727
н	4.802727	2.262743	1.318446
н	3.632693	0.973793	1.968136
С	3.314701	-0.010436	-1.063012
С	2.531106	-2.392043	0.239655
С	3.846153	-2.218136	-0.201238
Н	4.571315	-3.009750	-0.040711
С	4.229937	-1.042140	-0.853528
Н	5.253828	-0.926077	-1.195178
Н	2.231459	-3.308716	0.738458
Н	3.607073	0.903126	-1.570774
С	-2.723132	0.330894	-0.216094
С	-2.932012	-0.134811	1.088380
С	-3.788198	0.286725	-1.127651
С	-4.171519	-0.652868	1.466542
Н	-2.134608	-0.065598	1.823420
С	-5.021922	-0.239203	-0.753719
Н	-3.637248	0.661649	-2.136169
С	-5.216956	-0.713399	0.545951
н	-4.320930	-0.999769	2.484605
Н	-5.832830	-0.279612	-1.474824
Н	-6.180120	-1.119103	0.839898

E	-1184.134912
E+ZPE	-1183.874924
Н	-1183.855080
G	-1183.923921
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.020763	-0.973622	-0.400265
С	1.845168	-0.620419	0.953557
С	-0.180070	-0.951197	-0.356546
Ν	0.850522	-1.171302	-1.109256
S	0.149609	-0.516412	1.307098
С	-1.580760	-1.161509	-0.853642
0	-1.772018	-1.995021	-1.726364
С	0.640372	2.600471	-1.096555
Н	-0.061004	2.185461	-1.814564
Н	0.225639	3.099621	-0.221287
С	2.014076	2.416712	-1.250719
Н	2.299178	1.865221	-2.155475
С	3.087485	2.811331	-0.453055
Н	4.107563	2.560797	-0.727393
Н	2.937425	3.353038	0.479998
С	3.315655	-1.108272	-0.926223
С	2.936595	-0.401307	1.801745
С	4.206655	-0.542433	1.264135
Н	5.072148	-0.374217	1.896912
С	4.395440	-0.891755	-0.088664
Н	5.404291	-0.989462	-0.475942
Н	2.794308	-0.127067	2.841687
Н	3.447590	-1.375764	-1.969848
С	-2.692775	-0.380010	-0.256807
С	-2.512187	0.943372	0.167177
С	-3.957126	-0.979578	-0.177951
С	-3.596900	1.658719	0.670792
Н	-1.543274	1.426436	0.067772
С	-5.029240	-0.266966	0.346284
Н	-4.082881	-2.004620	-0.513115
С	-4.849135	1.052982	0.768819
Н	-3.462825	2.689026	0.983690
Н	-6.004508	-0.736029	0.425193
н	-5.688987	1.610318	1.172020

[8d 4d] singlet anion, optimized with SMD mimicking the water solution

) I		
E	-1184.147516	С	2
		С	2
E+ZPE	-1183.887612	С	0
н	-1183.868042	Ν	1

	_		• •	•	. •	• 1		CI ID	•	• 1	•	.1		1 .*
60	ʻ 1	101	amalat	0101010	010t11	n_{1700}	trith	S N/LL Y	10110	101	71100	tho	wator	colution
UUU.			SILIVICI	ашон.	ODTH			SIVIL	'	IUI	VIII V		water	SOLUTION
~ ~	•	~			- P			~						

E+ZPE	-1183.887612
Н	-1183.868042
G	-1183.936819
<s<sup>2></s<sup>	1.0227
imaginary freq.	N/A

С	2.322347	-0.138618	0.864688
С	2.106732	-0.941426	-0.281173
С	0.086941	-0.084154	0.883427
Ν	1.195489	0.316258	1.503454
S	0.391503	-1.120594	-0.544695
С	-1.222270	0.366138	1.249049
0	-1.369888	1.255521	2.165380
С	-0.628880	2.452165	-1.146963
Н	-1.330721	2.999328	-0.527700
н	-1.029541	1.726175	-1.849370
С	0.738614	2.676767	-1.060333
Н	1.087917	3.407511	-0.331436
С	1.686769	2.017316	-1.821472
Н	2.746449	2.214741	-1.700015
Н	1.390007	1.281554	-2.563626
С	3.644139	0.143316	1.250873
С	3.160856	-1.451282	-1.034527
С	4.465058	-1.151462	-0.638510
Н	5.301675	-1.533545	-1.214559
С	4.698458	-0.360551	0.497022
Н	5.719474	-0.137095	0.791383
Н	2.974228	-2.060681	-1.913746
Н	3.825992	0.759417	2.126574
С	-2.433921	-0.139590	0.547592
С	-2.620569	-1.489384	0.209370
С	-3.468904	0.767607	0.260989
С	-3.789702	-1.910954	-0.424032
Н	-1.866855	-2.225556	0.472273
С	-4.633270	0.347211	-0.374525
Н	-3.344340	1.811810	0.533466
С	-4.797453	-0.995385	-0.726026
Н	-3.916879	-2.961376	-0.668586
Н	-5.414452	1.067528	-0.598742
Н	-5.706005	-1.324562	-1.220696

E	-1184.150331
E+ZPE	-1183.890088
Н	-1183.871651
G	-1183.936886
<s<sup>2></s<sup>	0.6603
imaginary freq.	267.7i

С	2.391696	-0.803988	0.107288
С	2.964232	0.417565	-0.316137
С	0.508677	0.225881	-0.476762
Ν	1.018361	-0.890250	-0.002698
S	1.704071	1.485607	-0.879264
С	-0.869712	0.573835	-0.781125
0	-1.071924	1.682970	-1.386254
С	-3.305349	1.753870	1.730689
Н	-4.094484	2.483080	1.580276
Н	-3.599456	0.723204	1.918508
С	-1.978730	2.115031	1.711738
Н	-1.740809	3.163389	1.529141
С	-0.905309	1.228217	1.844511
Н	0.115794	1.591987	1.885606
Н	-1.076644	0.180519	2.074701
С	3.227937	-1.821106	0.594413
С	4.340755	0.635658	-0.261345
С	5.154783	-0.384467	0.226442
Н	6.228318	-0.233772	0.278015
С	4.598796	-1.602477	0.650123
Н	5.250115	-2.384945	1.027163
Н	4.769524	1.577277	-0.590502
Н	2.794740	-2.761654	0.921313
С	-1.999044	-0.360668	-0.580795
С	-1.922461	-1.577650	0.127306
С	-3.254906	0.029222	-1.083285
С	-3.053527	-2.366932	0.308770
Н	-0.976045	-1.896951	0.543360
С	-4.384265	-0.769209	-0.904841
Н	-3.336762	0.964786	-1.625524
С	-4.292566	-1.971685	-0.206492
н	-2.968553	-3.298285	0.861277
н	-5.339043	-0.443960	-1.308046
Н	-5.171009	-2.592978	-0.061134

 $TS'd_{67-5}$ singlet anion, optimized with SMD mimicking the water solution

E	-1184.204573
E+ZPE	-1183.938230
н	-1183.920668
G	-1183.983580
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

	С	-2.380371	0.230540	-0.706286
	c	-2.767900	-0.114806	0.603740
	C	-0.434616	0.576576	0.296424
	Ν	-1.050382	0.619621	-0.839903
	S	-1.412090	0.085570	1.679225
	С	1.045533	0.865766	0.576314
	0	1.216695	1.195267	1.894978
	С	3.823858	2.245036	-1.231695
	Н	4.874682	2.477172	-1.081655
	Н	3.521398	1.929594	-2.228963
	С	2.936347	2.344326	-0.239160
	Н	3.275052	2.659623	0.747613
	С	1.478943	2.026188	-0.375191
	Н	0.875795	2.895763	-0.083097
	Н	1.244816	1.789450	-1.417468
	С	-3.311934	0.164407	-1.750403
	С	-4.074041	-0.522176	0.891159
	С	-4.985921	-0.586644	-0.155818
	Н	-6.004512	-0.904511	0.043006
	С	-4.607438	-0.245638	-1.466363
	Н	-5.339088	-0.304980	-2.265869
	Н	-4.368086	-0.784089	1.902677
	Н	-3.011739	0.429906	-2.759484
	С	1.807181	-0.426420	0.174732
	С	1.832799	-0.890237	-1.148456
	С	2.506411	-1.148138	1.143628
	С	2.544078	-2.038515	-1.491325
	Н	1.292010	-0.352195	-1.922159
	С	3.219353	-2.301999	0.804909
	Н	2.492471	-0.795654	2.169501
	С	3.242800	-2.751348	-0.513606
	Н	2.553822	-2.377337	-2.523266
	Н	3.757360	-2.847151	1.575330
ļ	Н	3.798079	-3.645682	-0.779879

5'd singlet anion, optimized with SMD mimicking the water solution

E	-1184.137992
E+ZPE	-1183.875004
Н	-1183.857457
G	-1183.919595
<s<sup>2></s<sup>	0.0000
imaginary freq.	318.2i

TS'd₂₋₅ singlet anion, optimized with SMD mimicking the water solution

Ś

С	2.354155	0.104804	-0.552683
С	2.093779	-1.131127	0.068999
С	0.111667	0.294811	-0.415535
Ν	1.245560	0.927197	-0.767236
S	0.380765	-1.289779	0.399277
С	-1.166328	0.859240	-0.666622
0	-1.288821	1.928067	-1.362765
С	1.533367	2.528032	0.686679
Н	2.617910	2.494111	0.718868
Н	1.094634	3.259180	0.013441
С	0.766340	2.022713	1.737913
Н	1.265489	1.416724	2.494475
С	-0.611258	2.000813	1.675869
Н	-1.196682	1.504580	2.444835
Н	-1.143573	2.662238	0.999309
С	3.667765	0.428438	-0.907672
С	3.115416	-2.037258	0.347188
С	4.421321	-1.698540	-0.009424
Н	5.229724	-2.392480	0.197883
С	4.692710	-0.474578	-0.633838
Н	5.712993	-0.225652	-0.908763
Н	2.902274	-2.985739	0.830893
Н	3.874314	1.380729	-1.387973
С	-2.418046	0.098581	-0.330666
С	-2.629708	-0.581180	0.877223
С	-3.438383	0.079863	-1.293573
С	-3.816943	-1.276292	1.104936
Н	-1.880652	-0.541671	1.661736
С	-4.623198	-0.617679	-1.068577
Н	-3.290556	0.612033	-2.228328
С	-4.816773	-1.301727	0.132375
Н	-3.964617	-1.787361	2.051602
Н	-5.395696	-0.627257	-1.831783
Н	-5.741452	-1.841368	0.312597

2aWAT neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1068.914969
E+ZPE	-1068.664539
Н	-1068.641476
G	-1068.717351
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.791176	0.693270	-1.044961
С	3.538764	-0.197544	-0.398028
С	1.069293	-0.590914	-0.152981
Ν	1.398889	0.552867	-0.931243
S	2.554569	-1.337864	0.522283
Н	3.166312	1.507613	-1.650297
Н	4.615437	-0.272556	-0.395100
С	-0.149434	-1.109474	0.045877
0	-1.257092	-0.476943	-0.493886
Н	-1.942932	-1.142414	-0.729098
С	-0.437795	-2.310511	0.886110
Н	0.468166	-2.870077	1.124085
Н	-0.920319	-2.026337	1.827224
Н	-1.116652	-2.986693	0.357003
С	0.661480	1.808713	-0.698579
Н	1.154757	2.568659	-1.309780
Н	-0.358043	1.710309	-1.063813
С	0.668315	2.225559	0.743162
Н	1.645145	2.267826	1.223278
С	-0.428540	2.531530	1.426489
Н	-0.384239	2.843698	2.464893
Н	-1.409926	2.489959	0.960010
0	-3.337991	-2.079186	-1.162949
Н	-4.077319	-1.715887	-0.665260
Н	-3.555504	-1.911574	-2.085086
0	-3.038379	1.717880	-1.259244
Н	-2.631465	2.557911	-1.029776
Н	-2.395922	1.057164	-0.965777
0	-2.888877	0.105543	1.901436
Н	-2.708202	0.982352	2.250121
Н	-2.315459	0.033683	1.124165

2aWAT neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1069.151458
E+ZPE	-1068.905116
Н	-1068.881638
G	-1068.958926
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.689010	0.551026	-1.212393
С	3.478606	-0.311723	-0.567549
С	1.020010	-0.612206	-0.064922
Ν	1.309938	0.467744	-0.948829
S	2.557994	-1.343553	0.544482
Н	3.020536	1.303290	-1.915203
Н	4.547859	-0.424424	-0.658695
С	-0.186041	-1.115079	0.254374
0	-1.342983	-0.513454	-0.249325
Н	-1.982191	-1.214691	-0.523421
С	-0.412795	-2.256648	1.194970
Н	0.499302	-2.831106	1.367551
Н	-0.781793	-1.910663	2.167500
Н	-1.163381	-2.940071	0.784795
С	0.611938	1.769017	-0.790675
Н	1.009776	2.415063	-1.578376
Н	-0.449379	1.637014	-0.983005
С	0.831688	2.407156	0.553342
Н	1.867152	2.490227	0.879050
С	-0.149073	2.873161	1.324617
Н	0.054566	3.350462	2.277645
Н	-1.190030	2.806266	1.018989
0	-3.201866	-2.317284	-1.170270
Н	-4.051509	-2.180614	-0.730459
Н	-3.371883	-2.112579	-2.099324
0	-3.190818	1.499727	-1.537863
Н	-3.033304	2.369991	-1.151571
Н	-2.554930	0.921769	-1.088688
0	-2.892103	0.486828	2.011816
Н	-2.435446	1.275532	2.328853
Н	-2.360717	0.192403	1.249003

2'aWAT singlet anion, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1068.447951
E+ZPE	-1068.210370
Н	-1068.188859
G	-1068.261175
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.431539	0.168984	-1.312048
С	3.083335	-0.850305	-0.753340
С	0.677906	-0.712922	-0.065330
Ν	1.100361	0.370878	-0.902839
S	2.103822	-1.686944	0.460711
Н	2.849372	0.855111	-2.038670
Н	4.094305	-1.168239	-0.962557
С	-0.611643	-1.011645	0.202355
0	-1.629350	-0.301030	-0.282019
С	-0.990154	-2.158928	1.100091
Н	-0.135591	-2.759647	1.418183
Н	-1.494146	-1.784818	1.997952
Н	-1.695450	-2.815724	0.579893
С	0.814802	1.734348	-0.409379
Н	1.117571	2.427804	-1.199994
Н	-0.262804	1.829725	-0.273607
С	1.533985	2.059424	0.868369
Н	2.621927	2.067177	0.818707
С	0.924450	2.297546	2.025071
Н	1.485538	2.515202	2.928751
Н	-0.159430	2.286029	2.105691
0	-4.059379	-1.420739	-0.226829
Н	-4.041787	-2.047171	0.500916
Н	-3.147135	-1.033526	-0.236997
0	-1.911543	1.185511	-2.478107
Н	-1.296205	1.921703	-2.436981
Н	-1.708698	0.642374	-1.675703
0	-2.694162	1.653019	1.207964
Н	-2.156403	2.430679	1.039053
Н	-2.264597	0.935181	0.681052

2'aWAT singlet anion, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1068.687463
E+ZPE	-1068.453981
Н	-1068.431891
G	-1068.506164
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	2.473651	-0.070375	-1.325685
С	3.080302	-1.066645	-0.671242
С	0.686052	-0.700362	0.043665
Ν	1.163420	0.251117	-0.923607
S	2.072921	-1.716522	0.642643
Н	2.913822	0.509452	-2.127301
Н	4.065450	-1.467799	-0.857353
С	-0.613347	-0.895002	0.381574
0	-1.619954	-0.174371	-0.138814
С	-1.013414	-1.921428	1.412648
Н	-0.192137	-2.577506	1.708857
Н	-1.395240	-1.434441	2.317687
Н	-1.822202	-2.546372	1.017766
С	0.921402	1.695062	-0.665553
Н	1.286074	2.227741	-1.549785
Н	-0.153412	1.857712	-0.597439
С	1.611137	2.217310	0.565231
Н	2.688251	2.064436	0.610034
С	0.990907	2.836019	1.569151
Н	1.533920	3.203716	2.434099
Н	-0.082642	3.005918	1.555911
0	-3.962818	-1.455237	-0.577496
Н	-3.972618	-2.239556	-0.016519
Н	-3.088745	-1.021040	-0.384325
0	-2.038540	0.906473	-2.567759
Н	-1.427286	1.643760	-2.679740
Н	-1.798869	0.514136	-1.686704
0	-2.878806	1.504188	1.536376
Н	-2.295788	2.266393	1.630104
Н	-2.388459	0.884065	0.930480

2cWAT neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1619.701093
E+ZPE	-1619.269941
Н	-1619.236176
G	-1619.336122
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-1.620911	-2.255803	-0.689528
С	-1.582514	-1.761272	-1.932038
С	0.204093	-0.817273	-0.447700
Ν	-0.692062	-1.680512	0.226894
S	-0.364739	-0.472929	-2.099932
С	-2.503149	-3.354651	-0.191144
н	-1.914429	-4.090736	0.363028
н	-3,283278	-2.982155	0.479666
н	-2 995141	-3 863179	-1 019546
Ċ	-1 295328	-1 095795	1 451314
ц	-1 986089	_1 831505	1 861984
и П	-1.500005	-1.051505 0 066564	2 100722
с С	2 01/004	0.201746	1 175070
	-2.014950	0.201740	1 024400
	-2.09/955	2.595560	1.024400
C	-3.283339	2.465015	0.425446
C	-3.942941	3./30892	-0.024527
н	-3.324082	4.223919	-0.//945/
н	-4.925545	3.529607	-0.449210
н	-4.048665	4.422260	0.815094
С	-3.258035	0.206966	0.585903
Н	-3.771263	-0.733018	0.407391
С	-1.459384	1.481470	1.414623
Ν	-0.299673	1.664275	2.096367
Н	0.130608	2.573563	2.018092
Н	2.337300	-0.245823	1.752580
С	-2.368696	-2.142643	-3.141292
н	-3.139946	-2.872748	-2.893894
н	-2.863444	-1.265275	-3.570035
н	-1.726534	-2.569652	-3.917753
С	1.367105	-0.386178	0.064491
0	1.790702	-0.909390	1.271794
C	2.256259	0.597898	-0.580538
c	1.754484	1.811608	-1.056051
c	3.628776	0.342305	-0.684264
c	2 602774	2 741817	-1 647666
н	0 699486	2 038142	-0 942764
C	1 171395	1 2755/1	-1 267708
ц	4 020285	0 501771	0 205262
с С	2 062207	2 476604	1 7550202
с ц	2 200527	2.470004	-1./55051
	2.200557	3.000927	-2.010978
н	5.535110	1.064/22	-1.346/11
н	4.625700	3.204431	-2.21016/
N	-3.916438	1.314293	0.202465
н	0.336932	0.892073	2.210795
0	3.189789	1.022536	2.569627
Н	4.030370	1.075789	2.102364
Н	2.720137	1.820529	2.304204
0	1.117793	-3.020763	3.104682
Н	0.159725	-3.075934	3.154643
Н	1.284586	-2.328595	2.447068
0	3.131362	-3.172153	0.064358
Н	2.745325	-2.474035	0.614276
Н	3.160837	-2.779339	-0.812784

2cWAT neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1620.111654
E+ZPE	-1619.687093
Н	-1619.652506
G	-1619.755850
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-1.340628	-2.404267	-0.630564
Ċ	-1.199098	-2.149658	-1.942684
c	0 337937	-0 762198	-0 190096
N	0.557557	1 569667	0.725202
	-0.371393	-1.506007	0.235295
5	-0.0//800	-0./85030	-2.23383/
C	-2.136459	-3.5192/5	-0.023347
Н	-1.493697	-4.150734	0.598469
Н	-2.950231	-3.158597	0.611631
Н	-2.577430	-4.143805	-0.799312
С	-1.289696	-0.933790	1.381111
Н	-1.861774	-1.721316	1.869809
н	-0.544268	-0.604035	2.098902
С	-2.219485	0.199688	0.993993
N	-2.776965	2.528832	0.741191
C	-3 939886	2 1/7176	0 203/23
	1 85//00	2 220206	0.203423
	4.004490	2 799740	-0.207277
	-4.369431	2.022202	-1.091013
н	-5.804986	2.832383	-0.609943
н	-5.039/68	3.956850	0.53630/
С	-3.467986	-0.060361	0.461894
Н	-3.802989	-1.086942	0.358369
С	-1.913071	1.578911	1.148943
Ν	-0.784640	2.028398	1.759327
Н	-0.583719	3.014916	1.679784
Н	2.146161	0.263872	1.824478
С	-1.781294	-2.837975	-3.134459
Н	-2.523140	-3.579849	-2.837202
н	-2.274735	-2.117803	-3.796165
н	-1.010175	-3.343979	-3.725219
С	1,452889	-0.194347	0.035480
0	1.781242	-0.522950	1.349680
Ċ	2.398255	0.670769	-0.684412
c	1 972620	1 590187	-1 659693
	3 777054	0 601289	_0 300137
	2 200002	2 202021	2 245704
	2.090000	2.303034	-2.343/94
н	0.915/96	1./16394	-1.860987
с 	4.688615	1.400109	-1.082042
Н	4.135020	-0.092620	0.351680
C	4.252360	2.292990	-2.063587
н	2.534012	3.088018	-3.089728
Н	5.745289	1.321629	-0.850750
Н	4.964748	2.914713	-2.593821
Ν	-4.343943	0.880105	0.055319
Н	0.007050	1.419380	1.895548
0	2.762971	1.579753	2.786680
Н	3.392854	2.052890	2.226203
Н	2.067814	2.224569	2.973838
0	1.118921	-2.156750	3.757275
н	0.157268	-2.148110	3.837633
н	1,290641	-1.677677	2,930304
0	3.693873	-2.695010	1.413670
н	3 063610	-1 9516/2	1 3863/1
	1 200000	-1.77045	1.300341
п	4.398929	-2.432040	0,005600

2'cWAT neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1619.234412
E+ZPE	-1618.815744
Н	-1618.783378
G	-1618.879131
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.809022	2.297996	-0.642792
С	1.738062	1.855680	-1.904731
С	-0.108597	0.966758	-0.447367
Ν	0.846476	1.758798	0.258438
S	0.454363	0.640857	-2.117413
С	2.774783	3.309910	-0.111784
н	2.253788	4.048625	0.503617
н	3,548244	2.848320	0.510057
н	3,276201	3.834967	-0.924324
C	1.413463	1.119518	1.467954
н	2.166879	1.792402	1.877491
н	0 626004	1 045942	2 215964
c	2 022511	-0 231952	1 198061
N	1 903578	-2 624396	1 099030
C	3 11813/	-2 609719	0 544265
c	3 690870	-2.000/10	0.162062
ц	3 061553	- 1 11218	-0 597665
и П	1 700201	-3 830103	-0.337670
п	4.700501 2 712546	-2.020492	1 020260
п С	2 275007	-4.005005	0 645071
	3.2/508/	-0.352554	0.645971
н	3.869010	0.538543	0.463899
C	1.343538	-1.452008	1.429599
N	0.134459	-1.501274	2.048694
н	-0.3548/6	-2.380828	1.9662/4
C	2.54418/	2.244415	-3.099406
н	3.35330/	2.923857	-2.828634
н	2.992642	1.360718	-3.565361
Н	1.924854	2.733830	-3.857908
C	-1.28605/	0.541650	0.053091
0	-1.708656	0.800404	1.295742
C	-2.153145	-0.373317	-0.752631
С	-1.742132	-1.678488	-1.031486
С	-3.424548	0.034896	-1.164186
С	-2.582957	-2.558578	-1.706665
Н	-0.761065	-2.008508	-0.705315
С	-4.264257	-0.841226	-1.841828
Н	-3.754989	1.045985	-0.951368
С	-3.846607	-2.142098	-2.112026
Н	-2.252298	-3.571296	-1.910650
Н	-5.246553	-0.509206	-2.160263
Н	-4.503996	-2.827006	-2.636345
Ν	3.848263	-1.521613	0.306170
Н	-0.467640	-0.683514	1.999175
0	-4.145022	2.038731	1.546120
Н	-3.277578	1.594967	1.415939
Н	-4.779817	1.419085	1.177574
0	-1.201285	2.984818	2.807476
Н	-0.254902	3.136546	2.865762
Н	-1.296749	2.203890	2.212067
0	-3.285583	-1.270691	2.181108
Н	-2.729603	-0.515468	1.881662
н	-3.409269	-1.795308	1.384745

2'cWAT neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1619.645909	C
E+ZPE	-1619.234228	c
Н	-1619.200780	N S
G	-1619.301496	C
<s<sup>2></s<sup>	0.0000	H H
imaginary freq.	N/A	H

C	1.431931	2.549946	-0.1300/3
С	1.239786	2.587576	-1.467003
С	-0.278994	0.927471	-0.288328
Ν	0.665404	1.575742	0.568237
S	0.097570	1.321271	-2.009227
C	2.318946	3.466743	0.651697
н	1 774198	3 904325	1 494178
ц	3 101738	2 9/7985	1 060594
Ц	2 685074	1 280006	0 026532
	2.003374	4.200090	1 521076
	2.005045	1 264225	1.5510/0
	2.085045	1.304325	2.005000
н	0.693178	0.326943	2.249501
C	2.192264	-0.418220	0.910311
N	2.452//4	-2./280/0	0.285512
C	3.643375	-2.402779	-0.232131
С	4.420748	-3.513397	-0.876030
н	3.857783	-3.932096	-1.715461
Н	5.383371	-3.156466	-1.240039
Н	4.588049	-4.324741	-0.162050
С	3.442362	-0.217449	0.363215
Н	3.886747	0.772896	0.394140
С	1.717594	-1.756167	0.859310
Ν	0.543561	-2.134792	1.432306
Н	0.217627	-3.064855	1.209525
С	1.805659	3.508905	-2.499288
Н	2.556862	4.173361	-2.070507
Н	2.283527	2.942763	-3.306892
Н	1.027387	4.128113	-2.959133
С	-1.373203	0.242828	0.156139
0	-1.657870	0.129119	1.467484
С	-2.323824	-0.410327	-0.785943
С	-1.904732	-1.114559	-1.926958
С	-3.706470	-0.352765	-0.524825
С	-2.826971	-1.711151	-2.787539
н	-0.846957	-1.229336	-2.131860
С	-4.627104	-0.944920	-1.384696
Н	-4.059318	0.171279	0.355030
С	-4.193360	-1.626535	-2.524788
н	-2.472853	-2.255600	-3.656471
н	-5.687315	-0.873714	-1.166018
н	-4.910682	-2.091143	-3.192051
N	4.188214	-1.180582	-0.217778
н	-0.178488	-1.443080	1.610695
0	-3.268767	2.311219	2.012771
н	-2 706352	1 520814	1 821990
н	-3 899924	2 339059	1 284086
0	-1 179132	0 650308	4 153513
н	-0 203/80	1 007060	4.100000
н	-1 25061/	A 522552	3 182/182
0	-1.230014	-2 021107	2 307017
ц	-2.5/242/	-2.034437	2.55/01/
	-2.50/202	-1,24JJ4T	1 720124
п	-2.021328	-2.200202	1./29124

2cN1HWAT neutral singlet, optimized with SMD mimicking the water solution at the

level of ω B97XD/6-31	l1++G(d,p).
------------------------------	-------------

E	-1620.164337
E+ZPE	-1619.718868
Н	-1619.685219
G	-1619.784171
<s<sup>2></s<sup>	0.0000
imaginarv freq.	N/A

С	1.590855	2.259373	-0.750315
С	1.615783	1.699701	-1.965459
С	-0.214275	0.789404	-0.510895
Ν	0.635848	1.707526	0.153636
S	0.435883	0.374931	-2.115510
С	2.423567	3.404822	-0.271472
н	1.792589	4.152101	0.217063
н	3.181192	3,087633	0.451747
н	2,940428	3.882940	-1.102669
C	1.196209	1.200109	1.426107
н	1.858685	1,962519	1.833039
н	0.384802	1.083696	2.140188
Ċ	1 955962	-0 090903	1 227912
N	2 074792	-2 519719	1 138097
C	2 256702	2, 315715	0 585056
ĉ	2 091656	2.425505	0.122276
L L	2 670012	2 960925	0.133270
п	5.070915	-3.009033	-0.090/01
	5.000/39	-3.405055	0.138/52
н	3.723239	-4.485877	0.769601
C	3.2030//	-0.0/2602	0.689638
Н	3./51/43	0.836009	0.484264
C	1.41348/	-1.389948	1.489889
N	0.255281	-1.5/2229	2.109/1/
Н	-0.087909	-2.512747	2.234449
н	-2.345579	0.304097	1.690215
С	2.438827	2.041152	-3.161893
Н	3.179444	2.805183	-2.923887
Н	2.972563	1.157578	-3.525902
Н	1.815292	2.409604	-3.982077
С	-1.386691	0.364493	-0.011678
0	-1.857597	0.961112	1.140265
С	-2.236361	-0.677920	-0.613124
С	-1.683492	-1.861424	-1.110353
С	-3.626234	-0.509823	-0.658496
С	-2.496694	-2.840273	-1.671075
Н	-0.615102	-2.032418	-1.033508
С	-4.436149	-1.492329	-1.210791
н	-4.070578	0.395222	-0.259433
С	-3.873947	-2.658589	-1.724775
Н	-2.052440	-3.753433	-2.051131
н	-5.510036	-1.346060	-1.244202
н	-4.508536	-3.424349	-2.156578
Ν	3.841804	-1.228761	0.383105
н	-0.339454	-0.808039	2.387717
0	-3.110048	-0.891883	2.657768
н	-3 868312	-0 508187	3 109484
н	-3 489176	-1 508096	2 021765
0	-1 253157	3 192262	2 861282
н	-0 31/633	3 382062	2 780528
н	-1 106000	2 468750	2.700500
0	_3 <u>/</u> 31/09	3 077616	-0 077865
U U	- 2 0///212	2 20274F	0.022003
п	-2.944013	2.202/02	0.40000
п		2.044001 1 102660	-0.042049
п	4.//0492	-1.137003	-0.02115/

2cN1HWAT neutral singlet, optimized with SMD mimicking the water solution at the

E	-1620.572346
E+ZPE	-1620.133672
н	-1620.099129
G	-1620.200714
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.324049	2.387518	-0.719375
С	1.206475	2.064907	-2.018900
С	-0.362558	0.753511	-0.529746
Ν	0.536352	1.595836	0.173319
S	0.088273	0.688886	-2.262698
c	2.106142	3.533290	-0.152871
ц	1 //839/	/ 107131	0 /17277
н Ц	2 002522	2 200102	0.41/2//
	2.905522	5.208192	0.521485
н	2.56//02	4.114461	-0.950159
C	1.235273	1.018244	1.353342
Н	1.799870	1.821674	1.822874
Н	0.485798	0.705932	2.074221
С	2.180895	-0.122486	1.021940
Ν	2.738646	-2.491620	0.822049
С	3.913958	-2.165466	0.341433
С	4.877939	-3.211605	-0.098843
н	4.697273	-3.441189	-1.154196
н	5 908362	-2 868618	0 003/85
н Ц	4 720026	4 121072	0.000400
п С	4.729920	-4.121972	0.4/9/55
C	3.432576	0.140692	0.546614
н	3.823932	1.140465	0.424439
С	1.860878	-1.513843	1.177931
Ν	0.712025	-1.941642	1.696809
Н	0.554423	-2.936722	1.778796
Н	-2.173533	-0.190589	1.808170
С	1.810397	2.692275	-3.233190
н	2.545467	3.450188	-2.960977
н	2.315934	1,939451	-3.847658
н	1.049046	3.165174	-3.862530
c	-1 /81670	0 205729	0 005/07
0	1 826064	0.584364	1 300706
c	-1.820004	0.384304	1.300700
C	-2.409389	-0.702922	-0.684/9/
C	-1.959348	-1.6/4264	-1.596091
C	-3.793201	-0.623977	-0.430539
С	-2.859113	-2.512020	-2.252455
Н	-0.897984	-1.804519	-1.769129
С	-4.687349	-1.466243	-1.083729
н	-4.168416	0.111318	0.270768
С	-4.227056	-2.412380	-2.002291
н	-2.485521	-3.256420	-2.946912
н	-5.748814	-1.380650	-0.878557
н	-4 925858	-3 068273	-2 508896
N	4.929090	0 969761	0 210560
	4.2/943/	1 217222	1 072700
	-0.031011	-1.51/552	1.9/2/00
0	-2.684/92	-1.522688	2.80/099
н	-3.059978	-1.204282	3.6389//
Н	-3.422594	-1.949128	2.350397
0	-1.212018	2.277679	3.675904
Н	-0.251192	2.278160	3.765966
Н	-1.371388	1.787395	2.853167
0	-3.795842	2.713324	1.322221
н	-3.151117	1.982678	1.300801
Н	-4.489153	2.438408	0.710264
Н	5.205661	-0.647000	-0.141692
2'cN1HWAT neutral singlet, optimized with SMD mimicking the water solution at the

level of	f <i>w</i> B97XD	/6-311++0	3(d,p).
----------	------------------	-----------	---------

E	-1619.699626
E+ZPE	-1619.266611
Н	-1619.234172
G	-1619.330282
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.774273	-2.335972	0.617129
С	1.700902	-1.915266	1.886247
С	-0.136978	-0.986447	0.440385
Ν	0.814054	-1.776705	-0.275735
S	0.418765	-0.703599	2.119278
C	2.735573	-3.342911	0.069112
Н	2,211319	-4.068046	-0.559355
н	3,512746	-2.875066	-0.543732
н	3 233061	-3 884270	0 873133
Ċ	1 382387	-1 134072	-1 476047
н	2 131534	-1 802305	-1 898703
н	0 598977	-1 033651	-2 22///0
Ċ	2 007057	0 206741	-2.224440
N	1 2007957	0.200741	1 050007
	2.007269	2.055505	-1.059097
c	2.09/200	2.039529	-0.5512/8
C II	3./33033	3.922983	-0.133824
н	3.124129	4.39/448	0.638275
н	4./42/50	3.//06//	0.248095
Н	3.767091	4.591314	-0.995991
С	3.253195	0.291266	-0.654238
Н	3.883576	-0.568397	-0.471706
С	1.326258	1.449940	-1.386852
Ν	0.121615	1.505440	-1.943147
Н	-0.341729	2.402414	-1.970689
С	2.500018	-2.330510	3.076596
Н	3.309684	-3.005180	2.796110
Н	2.946132	-1.457496	3.564115
Н	1.874832	-2.835136	3.819988
С	-1.301004	-0.529982	-0.063364
0	-1.701530	-0.740305	-1.322515
С	-2.170686	0.367875	0.758459
С	-1.755266	1.661182	1.082023
С	-3.449645	-0.044752	1.140982
С	-2.600134	2.526090	1.771514
н	-0.767589	1.995064	0.780911
C	-4.293581	0.816425	1.832286
Н	-3.782552	-1.047283	0.894636
c	-3.871951	2.106065	2.146372
н	-2.266195	3,529980	2.010622
н	-5.282116	0.481418	2.127307
н	-4 532524	2 779431	2 681483
N	3 781656	1 /19918/	-0 327986
	0 171586	0 677626	-0.527580
0	4 172212	1 020206	1 620267
U L	-4.1/2515	-1.950290	-1.039207
п	-3.296410	-1.510115	-1.400904
	-4.796904	-1.512141	-1.251115
0	-1.254288	-2.936437	-2.850543
н	-0.312/64	-2.118//9	-2.8991/1
Н	-1.33168/	-2.158223	-2.250624
0	-3.281984	1.36/336	-2.156677
Н	-2./36139	0.599947	-1.8/4/95
Н	-3.449261	1.843909	-1.338358
Н	4.711859	1.543849	0.071111

2'cN1HWAT neutral singlet, optimized with SMD mimicking the water solution at the

level of B3LYP/6-311++G(d,p

E	-1620.108516
E+ZPE	-1619.683191
Н	-1619.649611
G	-1619.749585
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.401639	-2.573824	-0.255558
С	1.159692	-2.862359	1.035180
С	-0.319985	-0.997494	0.140803
Ν	0.650507	-1.486595	-0.791252
S	-0.016006	-1.726781	1.761209
C	2.318480	-3.327382	-1.172442
Н	1.804621	-3.590864	-2.102168
н	3.206604	-2.747112	-1.442443
н	2 659994	-4 248890	-0 702392
c	1 397991	-0 493664	-1 597938
н	2 080069	-1 042347	-2 244337
н	0 693912	0 015260	-2 248474
c	2 189066	0.517776	-0 795679
N	2.103000	2 721602	0.755075
C	2 622000	2.721002	0.225720
Ċ	4 452007	2.370023	1 470624
с ц	4.455657	2 204522	2 408200
	4.077405	2 010120	2.490290
	2.202102	3.010129	1.405245
н	4.361207	4.319186	1.0/9425
C	3.438390	0.228553	-0.33//98
Н	3.938515	-0./11410	-0.525/80
C	1.698890	1.832418	-0.489214
N	0.513331	2.260694	-0.915257
н	0.211898	3.184281	-0.634690
С	1.693100	-3.961798	1.896023
н	2.474203	-4.525082	1.384127
Н	2.123983	-3.558778	2.819480
Н	0.904315	-4.663231	2.189628
С	-1.382612	-0.210753	-0.194796
0	-1.589970	0.200946	-1.461903
С	-2.380489	0.235294	0.816747
С	-2.022124	0.699204	2.092740
С	-3.748594	0.222142	0.484281
С	-2.990850	1.110412	3.009353
Н	-0.976199	0.772288	2.366697
С	-4.715348	0.628392	1.399405
Н	-4.052368	-0.120468	-0.497768
С	-4.342328	1.074171	2.670190
н	-2.684360	1.472995	3.984744
н	-5.763573	0.596255	1.121909
н	-5.095372	1.395454	3.381031
Ν	4.141577	1.144901	0.384093
н	-0.185140	1,626681	-1.307758
0	-3.079476	-1.807494	-2.618036
н	-2.558458	-1.073730	-2.207646
н	-3.856847	-1.897449	-2.054638
0	-1.022577	0.540318	-4.190486
н	-0.432435	-0.162317	-4.487755
н	-1,151651	0.362970	-3, 236244
0	-2.940958	2.507818	-1,943102
н	-2.479224	1.657474	-1.719109
Ч	-3 680810	2 5/1880	-1 336154
П	5 07016C	2. J41000 0 010010	0 715125
11	2.012100	0.910010	0.110100

2dWAT neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p). E -1414.270885 C -2.570620 -0.420330 -0.136542

E	-1414.270885
E+ZPE	-1413.918738
Н	-1413.890339
G	-1413.978436
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

	С	-2.570620	-0.420330	-0.136542
	С	-2.319341	-1.793848	-0.050245
	С	-0.233134	-0.381918	-0.260745
	Ν	-1.426783	0.347960	-0.317136
	S	-0.596706	-2.136334	-0.218162
	С	1.018684	0.095010	-0.125718
	0	1.223170	1.442638	0.119845
	Н	2.135394	1.687214	-0.157464
	С	-1.522110	1.700036	-0.864214
	Н	-0.616309	1.887127	-1.440869
	Н	-2.360370	1.723961	-1.566792
	С	-1.703950	2.755292	0.190714
	Н	-0.945383	2.785548	0.969189
	С	-2.709048	3.622702	0.197498
	Н	-2.793756	4.385028	0.965057
	Н	-3.479685	3.601300	-0.569227
	С	-3.880125	0.046095	-0.068003
	С	-3.344437	-2.710115	0.098723
	С	-4.656856	-2.240169	0.170921
	Н	-5.472039	-2.943782	0.291837
	С	-4.914592	-0.876695	0.085005
	Н	-5.935553	-0.516440	0.141884
	Н	-3.134012	-3.772054	0.154765
	Н	-4.095759	1.105607	-0.122871
	С	2.216050	-0.767943	-0.067249
	С	2.487451	-1.713318	-1.059402
	С	3.119733	-0.625018	0.994184
	С	3.620993	-2.515911	-0.981206
	Н	1.819906	-1.808000	-1.908946
	С	4.256256	-1.418793	1.063922
	Н	2.926678	0.112593	1.766004
	С	4.508393	-2.371233	0.078962
	Н	3.817033	-3.244145	-1.760323
	Н	4.944969	-1.299049	1.892910
	Н	5.395810	-2.991598	0.135652
	0	3.721197	2.184200	-0.662566
	Н	4.256099	1.383184	-0.650898
	Н	3.688498	2.448553	-1.587378
	0	1.109995	4.261942	-1.042509
ļ	Н	0.908987	3.404430	-0.649211
ļ	Н	2.029624	4.183001	-1.311046
	0	0.734860	1.501339	2.896436
ļ	Н	0.981994	0.591664	3.084332
	Н	0.908797	1.597464	1.944659

2dWAT neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p). ı

E	-1414.633198
E+ZPE	-1414.286343
Н	-1414.257794
G	-1414.347125
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

imaginary freq.

С	-2.559904	-0.495763	-0.032164
С	-2.375689	-1.886726	-0.030532
С	-0.212710	-0.558797	-0.152422
Ν	-1.372996	0.229861	-0.154778
S	-0.663262	-2.301057	-0.208930
С	1.061826	-0.109854	0.011834
0	1.219808	1.207359	0.440428
Н	1.833652	1.700791	-0.148186
С	-1.399411	1.598266	-0.706153
Н	-0.463658	1.745988	-1.244361
Н	-2.206806	1.647288	-1.441964
С	-1.577580	2.683192	0.322946
Н	-0.941651	2.620402	1.201097
С	-2.424426	3.701880	0.179956
Н	-2.493216	4.488328	0.924037
Н	-3.075141	3.784636	-0.686328
С	-3.851950	0.027681	0.053613
С	-3.447913	-2.763873	0.051796
С	-4.740120	-2.235503	0.142881
Н	-5.588839	-2.905459	0.212771
С	-4.933192	-0.853972	0.140408
Н	-5.936572	-0.449881	0.210985
Н	-3.288314	-3.835761	0.042265
Н	-4.016780	1.096995	0.063240
С	2.281064	-0.923431	-0.071612
С	2.408586	-2.009717	-0.958208
С	3.388587	-0.607199	0.742346
С	3.574432	-2.771107	-0.998576
Н	1.608030	-2.243441	-1.649310
С	4.553793	-1.365840	0.692694
Н	3.326597	0.232370	1.423692
С	4.653502	-2.457797	-0.172112
Н	3.644818	-3.600249	-1.694145
Н	5.387390	-1.105650	1.336015
Н	5.562120	-3.047870	-0.208417
0	2.725199	2.857097	-1.182196
Н	3.552276	3.162063	-0.785300
Н	2.974098	2.509747	-2.049334
0	0.675579	4.866925	-1.232742
Н	-0.092548	4.469559	-0.798632
Н	1.358982	4.171259	-1.213524
0	1.509052	1.623636	3.210613
Н	2.216376	1.032092	3.494162
Н	1.431872	1.465906	2.248559

2'dWAT neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1413.803033
E+ZPE	-1413.464434
Н	-1413.436962
G	-1413.524413
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

	C	-2.565865	-0.350023	0.001850
	С	-2.319388	-1.730394	0.038310
	С	-0.235674	-0.329460	-0.236649
	Ν	-1.436881	0.425129	-0.229585
	S	-0.621409	-2.087578	-0.300503
	С	1.003756	0.180634	-0.053114
	0	1.223903	1.477246	0.181502
	С	-1.560709	1.661640	-1.003345
	Н	-0.656647	1.760656	-1.605420
	Н	-2.404372	1.563248	-1.695900
	С	-1.740268	2.887335	-0.153098
	Н	-0.987074	3.044616	0.615202
	С	-2.731876	3.757016	-0.310356
	Н	-2.809964	4.645226	0.308322
	Н	-3.498764	3.610372	-1.067218
	С	-3.867124	0.119417	0.159283
	С	-3.342785	-2.639109	0.240562
	С	-4.645615	-2.163308	0.409076
	Н	-5.455870	-2.864789	0.570569
	С	-4.899378	-0.797695	0.361217
	Н	-5.912269	-0.431951	0.488164
	Н	-3.140276	-3.704209	0.256991
	Н	-4.073337	1.182744	0.135186
	С	2.196493	-0.712505	-0.069904
	С	2.474731	-1.565862	-1.139664
	С	3.082337	-0.685185	1.013696
	С	3.600396	-2.385703	-1.121761
	Н	1.815272	-1.577876	-2.001369
	С	4.204102	-1.503038	1.033666
	Н	2.879786	-0.021839	1.848238
	С	4.466734	-2.358334	-0.035105
	Н	3.803579	-3.038959	-1.963462
	Н	4.875070	-1.477125	1.885556
	Н	5.344381	-2.995193	-0.020445
	0	3.621398	2.631718	0.665542
	Н	4.117280	2.526765	-0.150278
	Н	2.783039	2.136825	0.506864
	0	1.768067	2.721241	-2.149214
ļ	Н	1.542947	2.278537	-1.296019
ļ	Н	2.666725	3.035047	-2.019667
	0	0.670415	1.852427	2.777464
	Н	1.270009	1.231300	3.198587
ļ	Н	0.851730	1.748349	1.810904

2'dWAT neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1414.163587
E+ZPE	-1413.829490
Н	-1413.801787
G	-1413.889325
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

l c	2 572760	0 254125	0 0211/0
	-2.3/2/00	1 742270	0.031140
	-2.340827	-1.742270	0.093299
N	-0.231011	0.307400	-0.228007
IN C	-1.420951	2 122256	-0.225450
	1 027044	-2.135250	-0.240900
	1 262109	1 420105	-0.050000
0	1.205198	1.430195	0.1/24/5
	-1.544156	1 7023592	-1.048/00
н	-0.623081	1.703315	-1.6263/8
н	-2.30582/	1.491026	-1./60851
	-1./52346	2.888497	-0.259381
Н	-1.040186	3.070489	0.540993
C	-2./12/42	3.//555/	-0.513501
н	-2.800636	4.694518	0.056/33
н	-3.441188	3.616351	-1.304160
C	-3.872820	0.133766	0.189255
C	-3.384640	-2.636060	0.318112
С	-4.684010	-2.139404	0.485307
н	-5.502351	-2.827183	0.663755
С	-4.919611	-0.767541	0.414441
н	-5.926173	-0.384817	0.540913
н	-3.195743	-3.703046	0.352804
Н	-4.068390	1.197500	0.149549
С	2.209122	-0.783233	-0.082791
С	2.413022	-1.725358	-1.102888
С	3.173615	-0.694458	0.936788
С	3.528644	-2.564237	-1.095228
Н	1.707745	-1.788196	-1.923878
С	4.285143	-1.532425	0.946767
Н	3.040413	0.029633	1.731917
С	4.468359	-2.473829	-0.069647
Н	3.667469	-3.279332	-1.899008
Н	5.009620	-1.454215	1.750378
Н	5.336573	-3.123403	-0.063339
0	3.588153	2.762249	0.770994
н	4.056893	2.866077	-0.065350
н	2.805599	2.199760	0.549805
0	1.794369	2.801809	-2.123985
н	1.591711	2.304254	-1.290104
н	2.584926	3.312002	-1.911694
0	0.685980	2.118288	2.725511
H	1.529325	2.008574	3.180371
н	0.877588	1.868331	1.782736
1	2121.200	1.0000001	

2cWAT' neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p). E -1466.793660 C -2.009364 -2.317836 0.010392

E	-1466.793660
E+ZPE	-1466.412411
Н	-1466.384961
G	-1466.470905
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-2.009364	-2.317836	0.010392
С	-1.682651	-2.218377	-1.283051
С	0.156232	-1.471725	0.248735
Ν	-1.038145	-1.819785	0.928875
S	-0.094428	-1.449181	-1.514227
С	-3.257802	-2.919617	0.570652
н	-3.014768	-3.613157	1.380136
Н	-3.932101	-2.159884	0.977080
н	-3.802829	-3.467424	-0.197473
С	-1.535581	-0.773480	1.859353
Н	-2.480656	-1.122930	2.272648
н	-0.840744	-0.702385	2.693708
С	-1.730038	0.552626	1.168636
Ν	-0.950599	2.682496	0.407565
С	-2.049087	2.768667	-0.347626
С	-2.155322	3.973948	-1.227942
Н	-1.408874	3.911133	-2.025726
н	-3.144617	4.039724	-1.678534
Н	-1.952640	4.883460	-0.658537
С	-2.837794	0.778764	0.385258
Н	-3.634294	0.041358	0.361111
С	-0.776663	1.598938	1.179040
Ν	0.309783	1.606889	1.987274
Н	1.033133	2.276277	1.769359
Н	2.198500	-1.065066	2.570418
С	-2.426359	-2.664468	-2.496922
Н	-3.416113	-3.038975	-2.234189
Н	-2.557145	-1.831426	-3.194987
Н	-1.888340	-3.456166	-3.027265
С	1.333418	-1.258899	0.856596
0	1.406751	-1.486539	2.221415
С	2.555651	-0.776784	0.188388
С	2.513761	0.329258	-0.665481
С	3.785213	-1.400507	0.431905
С	3.671139	0.784208	-1.286589
Н	1.575228	0.848820	-0.826261
С	4.940915	-0.939079	-0.184452
Н	3.831706	-2.255217	1.098674
С	4.886455	0.150867	-1.049252
Н	3.624612	1.644520	-1.944875
Н	5.886005	-1.435347	0.005827
Н	5.789734	0.508730	-1.530478
Ν	-3.029203	1.871181	-0.376651
Н	0.618788	0.749080	2.417551
0	1.149620	4.490416	-0.201906
Н	0.819339	4.955098	-0.975265
Н	0.420371	3.881158	0.043343

2cWAT' neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1467.160907	C
E+ZPE	-1466.783505	C
н	-1466.756091	N S
G	-1466.841893	C
<s<sup>2></s<sup>	0.0000	H H
imaginary freq.	N/A	Н

C	-0.339646	-2.998127	0.351824
С	0.200472	-3.123508	-0.872375
С	0.974845	-1.042252	0.348492
Ν	0.007162	-1.802927	1.046927
S	1.192135	-1.699134	-1.302536
С	-1.183817	-4.017271	1.054854
Н	-0.778625	-4.232653	2.048391
Н	-2.217566	-3.684812	1.186707
н	-1.207029	-4.947976	0.489419
С	-1.080143	-1.087735	1.772075
Н	-1.686420	-1.850530	2.256789
н	-0.627505	-0.503404	2.567911
с	-1.964749	-0.226773	0.892564
Ν	-2.689280	1.886228	0.003291
с	-3.572458	1.220966	-0.752917
C	-4.431635	2.044358	-1.666143
Н	-3.810114	2.649258	-2.331946
н	-5.079709	1,406930	-2.265811
Н	-5.051982	2.732643	-1.084627
C	-2,934853	-0.791438	0.089097
н	-3.086736	-1.865618	0.108221
C	-1.885466	1.190343	0.832922
N	-1.061919	1.919657	1.627543
н	-0.954238	2,899480	1.405427
н	1,959153	1,002538	2.509946
c	0.120057	-4,242212	-1.859611
н	-0 586095	-5 005511	-1 531339
н	-0.214262	-3.876501	-2.836659
н	1,093971	-4.720669	-2.009338
c	1 740725	-0 064969	0 898966
0	1 596532	0.004909	2 275474
c	2 758333	0 738098	0 213007
	2.750555	1 1/6030	_1 126221
c	3 921028	1 137277	0 904566
	3 600618	1 202255	1 756207
L L	1 710254	0 012072	-1.671610
	1.710334	1 800222	0 272764
	4.905050	1.090352	1 026609
	4.000030	0.030///	1 062268
	4./00300	2.20/925	-1.003208
	5.4/2551	2.190888	-2.78/996
н	5.794484	2.1/5951	0.824824
н	5.5296/7	2.852832	-1.554242
N	-3./4425/	-0.1034/5	-0./425/2
Н	-0.280588	1.4/3140	2.085910
0	-2.615675	4./45784	-0.073585
H	-3.185287	5.007049	-0.807021
Н	-2.654539	3.760023	-0.066212

2cN3HWAT' neutral singlet, optimized with SMD mimicking the water solution at the

level of	f <i>w</i> B97XD	/6-311++0	3(d,p).
----------	------------------	-----------	---------

E	-1467.249868
E+ZPE	-1466.855060
Н	-1466.827471
G	-1466.912919
<s<sup>2></s<sup>	0.0000
imaginary freq.	Ν/Δ

С	-1.476461	-2.651844	0.289429
С	-1.109623	-2.689732	-0.995886
С	0.482927	-1.378172	0.436590
Ν	-0.667514	-1.831659	1.135619
S	0.322270	-1.683232	-1.308427
С	-2.602967	-3.407642	0.917990
Н	-2.264456	-3.898071	1.834544
н	-3.443260	-2.758044	1.180747
Н	-2.979867	-4.172385	0.239827
С	-1.424684	-0.798071	1.880154
н	-2.293827	-1.281609	2.322297
н	-0.817740	-0.444714	2.709437
С	-1.877186	0.336837	0.996106
Ν	-1.628651	2.461871	0.000935
С	-2.705643	2.239393	-0.791071
С	-3.050564	3.319822	-1.752857
н	-2.227775	3.462257	-2.458569
Н	-3.953793	3.055939	-2.297991
Н	-3.204275	4.262144	-1.221556
С	-2.973465	0.211628	0.183072
н	-3.577908	-0.686464	0.240913
С	-1.172028	1.561839	0.902810
Ν	-0.133962	1.908196	1.655000
н	0.360004	2.768118	1.460824
н	2.369426	-0.361027	2.697679
С	-1.681373	-3.463291	-2.136218
н	-2.588810	-3.989075	-1.838549
Н	-1.937123	-2.794790	-2.964310
н	-0.966054	-4.198990	-2.516209
С	1.545664	-0.786575	1.004236
0	1.479185	-0.507793	2.361277
С	2.740304	-0.290886	0.286689
С	3.192042	1.016511	0.499391
С	3.465288	-1.123958	-0.570987
С	4.327415	1.485456	-0.150236
Н	2.653057	1.671047	1.175354
С	4.597308	-0.651078	-1.222769
н	3.150237	-2.150660	-0.716768
С	5.029644	0.655774	-1.018341
н	4.661445	2.502808	0.020390
н	5.150565	-1.310367	-1.882253
Н	5.914748	1.022442	-1.525970
Ν	-3.400439	1.135381	-0.713900
Н	0.355981	1.210426	2.204458
0	-0.194035	4.829240	-0.267235
Н	0.737743	4.611167	-0.370770
Н	-0.445859	5.246905	-1.097185
Н	-1.115613	3.360487	-0.106032

2cN3HWAT' neutral singlet, optimized with SMD mimicking the water solution at the

level of B3LYP/6-311++G(d,t)).	
-----------------------------	-----	--

E	-1467.614031
E+ZPE	-1467.223654
Н	-1467.196001
G	-1467.281479
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	-0.558095	-2.984391	0.393248
С	-0.038741	-3.128201	-0.836495
С	0.949289	-1.169285	0.434499
Ν	-0.100850	-1.838011	1.117704
S	1.104715	-1.812627	-1.226252
С	-1.475078	-3.947292	1.084574
Н	-1.080444	-4.207642	2.071554
Н	-2.481732	-3.544874	1.229478
Н	-1.569141	-4.864740	0.504899
С	-1.157395	-1.029938	1.791937
Н	-1.835357	-1.735831	2.266074
Н	-0.700319	-0.460037	2.593803
С	-1.963326	-0.134716	0.870469
Ν	-2.536617	1.945906	-0.115459
С	-3.527910	1.357508	-0.836831
С	-4.313564	2.239652	-1.745550
Н	-3.656154	2.696874	-2.490481
Н	-5.081181	1.657929	-2.250661
Н	-4.784365	3.046927	-1.177702
С	-3.003970	-0.637313	0.123318
н	-3.259850	-1.686561	0.210090
С	-1.728571	1.262363	0.742289
Ν	-0.816169	1.956404	1.418530
Н	-0.686903	2.940551	1.220893
н	2.209029	0.630603	2.650591
С	-0.220570	-4.214616	-1.845893
н	-0.990600	-4.918435	-1.529106
Н	-0.524220	-3.799869	-2.813022
Н	0.707662	-4.772426	-2.009206
С	1.737618	-0.197796	0.955002
0	1.421522	0.237725	2.249559
С	2.806940	0.552205	0.270211
С	2.946936	1.933202	0.510177
С	3.742694	-0.068847	-0.576690
С	3.968293	2.664555	-0.091124
Н	2.246494	2.438962	1.164746
С	4.760387	0.667045	-1.177283
н	3.692518	-1.136162	-0.749075
С	4.877854	2.037867	-0.942665
Н	4.049508	3.728109	0.104448
Н	5.473678	0.162793	-1.819863
Н	5.672397	2.607381	-1.411052
Ν	-3.782076	0.074148	-0.734756
Н	-0.073684	1.478773	1.924948
0	-2.065364	4.713356	-0.346239
Н	-1.128716	4.906781	-0.485839
Н	-2.511152	5.075138	-1.123820
Н	-2.378937	2.967975	-0.229527

2cWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1466.792000
E+ZPE	-1466.409689
Н	-1466.382762
G	-1466.467360
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	1.024628	2.491746	0.548241
С	0.798269	2.537234	-0.768727
С	-0.867391	1.118352	0.463673
Ν	0.172703	1.617291	1.289805
S	-0.536546	1.465717	-1.249778
С	2.041919	3.284935	1.304239
Н	1.587706	3.736986	2.190068
Н	2.881063	2.668815	1.640908
Н	2.448061	4.082916	0.683663
С	0.897085	0.604231	2.100020
Н	1.688130	1.127242	2.635310
Н	0.219774	0.218517	2.857179
С	1.490667	-0.503241	1.265459
Ν	1.443430	-2.703336	0.301729
С	2.541771	-2.378191	-0.377050
С	3.091335	-3.404914	-1.316427
Н	2.401798	-3.541868	-2.154447
н	4.060972	-3.097097	-1.706858
н	3.192203	-4.367669	-0.811211
С	2.637061	-0.298110	0.536136
н	3.169991	0.644513	0.610274
С	0.907862	-1.786875	1.123566
Ν	-0.171409	-2.179730	1.842074
н	-0.620309	-3.030037	1.535493
н	-2.947812	0.002142	2.494350
С	1.454263	3.356221	-1.829339
н	2.304019	3.909761	-1.428870
н	1.823066	2.715183	-2.636292
Н	0.754279	4.071832	-2.271478
С	-1.953242	0.462794	0.903417
0	-2.031432	0.181061	2.259933
С	-3.020705	-0.099872	0.047300
С	-3.402639	-1.437996	0.196463
С	-3.693936	0.693679	-0.886601
С	-4.418533	-1.973471	-0.585971
н	-2.899849	-2.063208	0.926213
С	-4.705628	0.154313	-1.671432
н	-3.432873	1.740502	-0.990460
С	-5.068949	-1.181160	-1.526602
н	-4.698924	-3.013664	-0.462981
н	-5.219655	0.783240	-2.389779
н	-5.860121	-1.599973	-2.138349
Ν	3.178674	-1.210675	-0.289324
Н	-0.789066	-1.480315	2.234743
0	5.455008	-0.592092	-1.801788
Н	5.590183	-1.346695	-2.380613
Н	4.656669	-0.827232	-1.273747

2cWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1467.159385
E+ZPE	-1466.782838
Н	-1466.755265
G	-1466.842495
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

	С	0.793049	2.510031	0.662699
	С	0.420748	2.795290	-0.595702
	С	-1.007398	0.999613	0.480978
	Ν	0.079963	1.435922	1.282898
	S	-0.891910	1.718548	-1.152802
	С	1.796986	3.266548	1.479412
	Н	1.354244	3.584383	2.428720
	Н	2.685157	2.674204	1.715600
	Н	2.130128	4.156156	0.946174
	C	0.918486	0.413874	1.983612
	н	1.651629	0.968138	2.566225
	Н	0.290741	-0.107420	2.698570
	C	1.640350	-0.560337	1.0/4330
	N	1.89/26/	-2.706669	0.003557
	C	3.000340	-2.236027	-0.581284
		3.729410	-3.100/51	-1.510207
		2.0/2/02	-3.450850	-2.333051
	п	4.020217	-2.003940	-1.91/001
	C	2 808468	-4.073200	0.383323
	н	2.000400	0.784169	0.434314
	C	1 210367	-1 895774	0.833958
	N	0.138175	-2.444762	1.457508
	н	-0.176530	-3.338532	1,106402
	н	-2.776541	-0.616104	2,483095
	C	0.876104	3.873907	-1.524253
	Н	1.715431	4.426622	-1.101524
	Н	1.201493	3.452641	-2.481556
	Н	0.072178	4.585824	-1.739721
	С	-2.007479	0.179449	0.884334
	0	-1.898826	-0.352318	2.175835
	С	-3.136852	-0.319190	0.076213
	С	-3.549142	-1.659285	0.209333
	С	-3.868675	0.513610	-0.789534
	С	-4.634609	-2.149765	-0.512652
	Н	-3.009832	-2.323961	0.874415
	С	-4.951187	0.018324	-1.511093
	Н	-3.605895	1.559308	-0.883817
	C	-5.338713	-1.316359	-1.381403
	н	-4.926330	-3.18/959	-0.398392
	н	-5.503088	0.683106	-2.166475
	H	-0.182/29	-1.098045	-1.944098
		3.501169	-1.00/8/4	1 00000
		-0.3/1241 5 015066	-1.040303 _0 053300	1 177646
	U	2.21200C	-0.0000209	-1.4//040
	п	0.240000 5 067226	-0./41224	-2.000034
ļ	п	0001000	-0.420005	-1.170020

2cN1HWAT' neutral singlet, optimized with SMD mimicking the water solution at the

level of	c ωB97XD/6-311++G	(d,p).
----------	-------------------	------	----

E	-1467.254910
E+ZPE	-1466.859551
н	-1466.832128
G	-1466.917655
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	0.921161	2.539256	0.497235
С	0.706720	2.536248	-0.822615
С	-0.934231	1.112547	0.436883
Ν	0.087836	1.660941	1.256969
S	-0.592898	1.413620	-1.282736
С	1.901927	3.389227	1.239664
н	1.419694	3.857103	2.102055
н	2.754757	2.812584	1.610600
н	2.292812	4.177507	0.597447
с	0.834964	0.691668	2.091982
Н	1.606116	1.244183	2.625723
н	0.167073	0.291556	2.849613
с	1.475155	-0.407015	1.278579
N	1.484639	-2.638033	0.311655
с	2,582992	-2.330643	-0.332563
c	3.225621	-3.304147	-1.255429
Н	3.115942	-2.952735	-2.285126
н	4.293333	-3.383185	-1.039814
н	2.755349	-4.279681	-1.157021
c	2.629520	-0.176326	0.596944
н	3,177662	0.753955	0.657374
C	0.911499	-1.709970	1.116932
N	-0.179340	-2.099891	1.769120
н	-0.565522	-3.007389	1,555086
н	-2.983995	-0.006214	2.495808
c	1,345735	3,345434	-1.900857
н	2.178991	3,930710	-1.510990
н	1.733798	2,694628	-2.690598
н	0.628362	4.031009	-2.362047
c	-2.005981	0.444071	0.891026
0	-2.073292	0.189738	2,252383
ĉ	-3.062465	-0.159370	0.049823
c	-3,436545	-1,493283	0.248112
c	-3,735236	0.593580	-0.917547
c	-4.443554	-2.065253	-0.519825
н	-2.936346	-2.086795	1,005464
C	-4.738272	0.017709	-1.687078
н	-3.481456	1,637830	-1.058793
c	-5,093161	-1,313957	-1,493862
н	-4.718074	-3,101752	-0.358587
н	-5 252537	0 615399	-2 431386
н	-5 877769	-1 761271	-2 093733
N	3 169580	-1 126692	-0 199208
н	-0 772309	-1 441728	2 260059
0	5.507595	-0.742383	-1.683731
н	6 26/391	-0 497651	-1 1/12/21
н	5,712306	-1.624171	-2.011302
н	4 045258	-0 933590	-0 717074
		0.22220	0.,1,024

2cN1HWAT' neutral singlet, optimized with SMD mimicking the water solution at the

level of B3LYP/6-311++G(d,t)).	
-----------------------------	-----	--

E	-1467.619607
E+ZPE	-1467.229251
Н	-1467.201604
G	-1467.286953
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	0.714280	2.524528	0.670287
С	0.333594	2.811506	-0.585196
С	-1.060381	0.980878	0.478831
N	0.020443	1 432704	1.282896
s	-0 960788	1 716118	_1 147994
c c	1 700500	2 206022	1 /02052
	1 245052	3.290033	1.493932
	1.245952	3.005994	2.440240
H	2.59/209	2./1920/	1./36896
Н	2.022/33	4.191018	0.963160
С	0.868062	0.431714	1.989357
Н	1.585061	0.992996	2.584508
Н	0.246788	-0.112713	2.692172
С	1.626003	-0.523642	1.085695
Ν	1.950089	-2.696775	0.023324
С	3.043572	-2.242122	-0.542624
С	3.856241	-3.106734	-1.445389
Н	3.872620	-2.682141	-2.453239
Н	4.888670	-3.159892	-1.090497
Н	3.433332	-4.107872	-1.484149
С	2.785733	-0.134291	0.478379
н	3.223904	0.844612	0.613651
С	1.222561	-1.875804	0.830917
Ν	0.142325	-2.421762	1.389776
н	-0.103935	-3.366574	1.127522
Н	-2.782353	-0.702162	2.466608
C	0.765818	3,906936	-1.504874
н	1.596005	4.471186	-1.079449
н	1.095314	3,500751	-2.467197
н	-0 052255	4 605392	-1 710461
c	-2 041436	0 135712	0 875371
0	_1 012106	-0 /18513	2 155378
c	-1.012100	-0.410515	0 066074
c	-3.109981	1 715900	0.000974
c	-2.2222192	-1./15690	0.100800
c	-3.929081	0.4/8011	-0.763904
C	-4.638916	-2.206/03	-0.554560
н	-2.992139	-2.38/563	0.806414
C	-5.011668	-0.016910	-1.485144
Н	-3.687309	1.531566	-0.830575
С	-5.370975	-1.362266	-1.388884
Н	-4.909372	-3.253146	-0.466594
Н	-5.585789	0.655289	-2.113246
Н	-6.215537	-1.744629	-1.950697
Ν	3.474817	-0.976996	-0.331420
Н	-0.553017	-1.862417	1.875282
0	5.836577	-0.016640	-1.558121
н	6.536628	0.183490	-0.922770
н	6.205507	-0.712185	-2.118747
Н	4.350113	-0.647869	-0.777308

2'cWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1466.314628
E+ZPE	-1465.946097
Н	-1465.919430
G	-1466.004447
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	0.980674	2.496001	0.542795
С	0.698335	2.532693	-0.765814
С	-0.876699	1.062183	0.538477
Ν	0.194088	1.602492	1.326730
S	-0.595295	1.393281	-1.202197
С	2.018984	3.314709	1.244647
н	1.616117	3.729034	2.172948
н	2.901613	2.721441	1.504125
н	2.352867	4.142236	0.619092
С	0.985021	0.613249	2.096081
н	1.799540	1.148199	2.584219
н	0.351119	0.216997	2.886554
С	1.542700	-0.498459	1.247825
Ν	1.432109	-2.708472	0.312451
С	2.516636	-2.406807	-0.400795
С	3.041797	-3.464929	-1.319742
н	2.261757	-3.775879	-2.018992
Н	3.902024	-3.101511	-1.880906
н	3.338240	-4.345895	-0.744192
С	2.663618	-0.314092	0.478800
н	3.206816	0.625598	0.522178
С	0.930221	-1.771787	1.134022
Ν	-0.142548	-2.121438	1.884904
Н	-0.594946	-2.979572	1.604248
С	1.285479	3.379656	-1.846135
Н	2.123130	3.973069	-1.477377
Н	1.655110	2.754887	-2.666124
Н	0.541129	4.062736	-2.267981
С	-1.927690	0.370564	1.044178
0	-2.048598	0.044772	2.320769
С	-2.996271	-0.139578	0.121426
С	-3.263091	-1.510276	0.048924
С	-3.790999	0.733211	-0.626368
С	-4.280450	-1.996953	-0.764341
Н	-2.665807	-2.202099	0.633516
С	-4.814184	0.249881	-1.436057
н	-3.608797	1.801090	-0.568408
С	-5.059767	-1.117690	-1.511514
н	-4.466284	-3.064583	-0.814676
Н	-5.424639	0.943820	-2.004153
Н	-5.856127	-1.495632	-2.143336
Ν	3.166808	-1.244911	-0.354134
н	-0.778748	-1.384454	2.205400
0	5.364323	-0.497418	-1.909321
Н	5.276658	0.456171	-1.981998
Н	4.589066	-0.780132	-1.368672

2'cWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1466.684672
E+ZPE	-1466.321250
н	-1466.294256
G	-1466.380182
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

C	0./258/0	2.546952	0.628465
С	0.319230	2.776109	-0.633142
С	-1.012883	0.946190	0.526411
Ν	0.076923	1.471293	1.305192
S	-0.922181	1.598961	-1.154266
С	1.731642	3.362520	1.386491
Н	1.328740	3.669294	2.357141
Н	2.657102	2.810844	1.578161
Н	1.998015	4.261602	0.831508
С	0.972745	0.500541	2.000049
Н	1.717659	1.085894	2.537406
Н	0.374178	-0.014828	2.746102
С	1.672968	-0.496710	1.105106
Ν	1.870457	-2.677072	0.087752
С	2.966223	-2.238629	-0.531745
С	3.683783	-3.183925	-1.450449
Н	3.731958	-2.766665	-2.460240
Н	4.712898	-3.333079	-1.111513
Н	3.180436	-4.148818	-1.489645
С	2.828133	-0.169616	0.425914
Н	3.266120	0.816760	0.545581
С	1.212087	-1.827307	0.910831
Ν	0.140033	-2.324307	1.574583
Н	-0.189979	-3.224439	1.253030
С	0.711223	3.852625	-1.593794
н	1.523406	4.463778	-1.198271
Н	1.049775	3.423465	-2.543772
Н	-0.131011	4.514847	-1.824100
С	-1.963273	0.085347	0.997581
0	-1.910538	-0.446250	2.219991
С	-3.091089	-0.383830	0.125632
С	-3.398957	-1.754254	0.066713
С	-3.929718	0.505087	-0.566671
С	-4.480224	-2.220037	-0.679105
Н	-2.782196	-2.460108	0.611614
С	-5.018198	0.042318	-1.305460
Н	-3.737984	1.570099	-0.514295
С	-5.296191	-1.323852	-1.371992
Н	-4.688076	-3.284245	-0.717191
Н	-5.656904	0.752141	-1.820619
Н	-6.141914	-1.684046	-1.947228
Ν	3.488027	-1.009898	-0.395972
Н	-0.583903	-1.679159	1.925965
0	5.830753	-0.176804	-1.698982
Н	5.938756	0.752384	-1.464531
Н	4.997795	-0.461963	-1.240824

2'cN1HWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of ω B97XD/6-311++G(d,p).

E	-1466.780119
E+ZPE	-1466.397855
Н	-1466.370976
G	-1466.455075
<s<sup>2></s<sup>	0.000
imaginary freq.	N/A

С	0.794106	2.601472	0.486333
С	0.509644	2.603272	-0.822027
С	-0.979848	1.059663	0.503726
Ν	0.055052	1.678824	1.283032
S	-0.725182	1.394755	-1.239272
С	1.781734	3.488730	1.177365
Н	1.352094	3.895344	2.096960
Н	2.695782	2.951577	1.449675
Н	2.069997	4.323008	0.538493
С	0.892118	0.763593	2.085761
Н	1.668823	1.354258	2.569953
Н	0.275846	0.342023	2.876273
С	1.530252	-0.331484	1.270749
Ν	1.570070	-2.602636	0.401315
С	2.641184	-2.293705	-0.287123
С	3.293545	-3.294554	-1.174974
Н	3.169764	-2.991276	-2.218227
Н	4.363953	-3.346939	-0.965284
Н	2.841559	-4.273069	-1.030244
С	2.650546	-0.095697	0.539863
Н	3.170344	0.853211	0.542678
C	0.985782	-1.650046	1.173152
N	-0.08/639	-2.018189	1.865619
Н	-0.450925	-2.942354	1.681160
C	1.045608	3.468198	-1.914549
н	1.861398	4.099367	-1.559962
н	1.431061	2.855022	-2./35/4/
H C	0.200549	4.115639	-2.329692
C	-1.9/6511	0.298775	1.020173
0	-2.0493/3	-0.040206	2.298935
c	-2.020040	-0.2820//	0.115209
c	-2.222000	-1.003901	0.000210
c	-3.640400	2 216920	-0.003390
L L	-4.220777	-2.210629	0.607/76
п С	-2.015544	-2.512594	1 162156
ц	-4.845415	1 609072	-1.402450
C	-5 035928	-1 394466	-0.040508
н	-1 370803	-3 291933	-0 729585
н	-5 480726	0 633901	-2 054272
н	-5 813513	-1 824353	-2 116026
N	3 190732	-1 066158	-0 235357
н	-0 755207	-1 316545	2 223985
0	5,429480	-0.645316	-1.874548
н	6.254250	-0.664119	-1.379698
н	5.449025	-1.441769	-2.414668
н	4.035121	-0.869384	-0.798798
••		0.000004	0., 50, 50

2'cN1HWAT'' neutral singlet, optimized with SMD mimicking the water solution at the level of B3LYP/6-311++G(d,p).

E	-1467.147695
E+ZPE	-1466.770962
Н	-1466.743713
G	-1466.829098
<s<sup>2></s<sup>	0.0000
imaginary freq.	N/A

С	0.635027	2.573355	0.621709
С	0.211612	2.811285	-0.632389
С	-1.077990	0.939340	0.514146
Ν	0.005930	1.480654	1.290580
S	-1.023365	1.628476	-1.151839
С	1.631529	3.397067	1.382664
Н	1.227352	3.688971	2.357312
Н	2.567541	2.860546	1.566368
н	1.880000	4.305009	0.834081
С	0.914220	0.536139	1.993872
Н	1.640299	1.134253	2.541465
н	0.324811	-0.004395	2.728105
С	1.654736	-0.438462	1.103622
Ν	1.922970	-2.643989	0.091167
С	3.018068	-2.221155	-0.496538
С	3.811542	-3.124265	-1.380266
н	3.843521	-2.721392	-2.396505
н	4.840937	-3.198399	-1.019818
н	3.363230	-4.114933	-1.400843
С	2.807513	-0.079949	0.469764
н	3.259201	0.897315	0.572426
С	1.216982	-1.788164	0.886642
Ν	0.131698	-2.279397	1.480870
н	-0.140901	-3.220142	1.227065
с	0.577542	3,905315	-1.583293
Н	1.388905	4.519249	-1.190682
н	0.906325	3,493309	-2.544073
н	-0.275322	4.561194	-1.791012
С	-1.993746	0.037844	0.977737
0	-1.889935	-0.527595	2.184864
C	-3.125472	-0.444048	0.121330
С	-3.423500	-1.817522	0.076959
С	-3.976789	0.431802	-0.572905
С	-4.505514	-2.298348	-0.657985
н	-2.798763	-2.513628	0.624860
С	-5.065632	-0.046379	-1.300764
н	-3.796516	1.499047	-0.529457
С	-5.332809	-1.415293	-1.354109
н	-4.705277	-3.364425	-0.684615
н	-5.713648	0.653987	-1.817171
н	-6.179094	-1.787306	-1.920873
Ν	3.472142	-0.957171	-0.328210
н	-0.599767	-1.655455	1.883507
0	5.846254	-0.065013	-1.614105
Н	6.553402	0.140096	-0.988331
Н	6.199276	-0.783394	-2.155781
Н	4.344689	-0.656328	-0.794686

6. References

- 1. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- 2. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 3. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 4. R. J. Bartlett and G. D. Purvis, *Int. J. Quantum Chem.*, 1978, 14, 561-581.
- 5. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910-1918.
- 6. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358-1371.
- 7. A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.
- 9. B. O. Roos, P. R. Taylor and P. E. M. Sigbahn, *Chem. Phys.*, 1980, 48, 157-173.
- K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej and K. Wolinski, J. Phys. Chem., 1990, 94, 5483-5488.
- 11. K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
- 12. M. Page, C. Doubleday and J. W. M. Jr., J. Chem. Phys., 1990, 93, 5634-5642.
- P. Skurski, M. Gutowski and J. Simons, *Int. J. Quantum Chem.*, 2000, 80, 1024-1038.
- 14. F. Aquilante, T. B. Pedersen and R. Lindh, J. Chem. Phys., 2007, 126, 194106.
- 15. N. Forsberg and P.-Å. Malmqvist, Chem. Phys. Lett., 1997, 274, 196-204.
- G. Ghigo, B. O. Roos and P.-Å. Malmqvist, *Chem. Phys. Lett.*, 2004, **396**, 142-149.
- 17. F. Aquilante, J. Autschbach, A. Baiardi, S. Battaglia, V. A. Borin, L. F. Chibotaru,

I. Conti, L. D. Vico, M. Delcey, I. F. Galván, N. Ferré, L. Freitag, M. Garavelli, X. Gong, S. Knecht, E. D. Larsson, R. Lindh, M. Lundberg, P. Å. Malmqvist, A. Nenov, J. Norell, M. Odelius, M. Olivucci, T. B. Pedersen, L. Pedraza-González, Q. M. Phung, K. Pierloot, M. Reiher, I. Schapiro, J. Segarra-Martí, F. Segatta, L. Seijo, S. Sen, D.-C. Sergentu, C. J. Stein, L. Ungur, M. Vacher, A. Valentini and V. Veryazov, *J. Chem. Phys.*, 2020, **152**, 214117.

18. B. Thapa and H. B. Schlegel, J. Phys. Chem. A, 2017, **121**, 4698-4706.