IR spectroscopic characterization of the co-adsorption of CO₂ and H₂ onto cationic Cu^{*n*} clusters

Olga V. Lushchikova,^a Máté Szalay,^b Hossein Tahmasbi,^c Ludo Juurlink,^c Jörg Meyer,^c Tibor Höltzl,^{b,d} and Joost M. Bakker^{*a}

Furukawa Electric Institute of Technology, Késmárk utca 28/A 1158. Budapest, Hungary

Supporting Information

Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands. MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary. Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Figure S1: Different adsorbate binding modes. X, Y represent the cluster atom. Continuous lines indicate the adsorbate binding mode, while dashed line indicate that the atoms X and Y belong to the cluster (not the actual coordination number). See the text for the notations.

The initial geometries for the cluster-adsorbate systems were systematically generated using our program based on the Molmod library.¹ We generated possible structures as follows:

- Rhombic Cu₄⁺ + CO₂ (X, Y=Cu)
- Rhombic Cu₄⁺ + CO + O (X=Cu, O, Y=Cu, C, O)
- Tetrahedral Cu₄⁺ + CO₂ (X, Y=Cu)
- Tetrahedral Cu₄⁺ + CO + O (X=Cu, O, Y=Cu, C, O)
- Rhombic Cu₄⁺ + H₂ (X=Cu, Y=Cu)
- The most stable intact H₂ isomer of [Cu₄,H₂]⁺ + CO₂ (X = Cu, Y=Cu, O, C)
- The most stable dissociated H₂ isomer of [Cu₄,H₂]⁺ + CO₂ (X = Cu, Y=Cu)
- The most stable dissociated H₂ isomer of [Cu₄,H₂]⁺ + CO + O (X=Cu, Y=Cu, C, O)
- The most stable Cu₄+COO + H₂ (X = Cu, Y=Cu, O, C)

¹ Verstraelen, T: Molmod software Library, https://mol-

mod.ugent.be/software

Figure S2: Raw depletion spectra for [Cu₄,mCO₂,nH₂]* and [Cu₅,mCO₂,nH₂]* with n=0-3, and m=0-2. Values exceeding 1 indicate a growth of the mass channel intensity, values below 1 indicate a reduction.

Figure S3: Raw depletion spectra for $[Cu_{6}, mCO_{2}, nH_{2}]^{+}$ and $[Cu_{7}, mCO_{2}, nH_{2}]^{+}$ with n=0-3, and m=0-2.

Figure S4: Experimental IRMPD spectrum of $[Cu_5,H_2]^*$ from Ref [51] and the harmonic spectrum of the structure indicated calculated at TPSSh/def2-TZVP + D3 level of theory. The harmonic frequencies are scaled by a factor of 0.968.

Figure S5: H_2 dissociation reactions paths on Cu₄⁺, computed using different DFT functionals (PBE – GGA, and TPSSh – hybrid meta GGA) and CCSD(T), and different basis sets. The importance of relativistic effects was estimated from the comparison of the PBE results with the def2-TZVP all-electron and the cc-pVTZ-PP basis set with the relativistic Effective Core Potential.

The CCSD(T) single point computations on the DFT geometries place TS4.3 lower in energy than 4B. We believe that due to the very flat potential energy surface, the accurate structure of the optimum is important. In case of these CCSD(T) calculations optimization is not feasible due to the computational cost; therefore, the reaction energies can vary to some extent, depending on which the method was used to optimize the geometries. The energies of the CCSD(T)/def2-TZVPPD calculation on PBE or TPSSh geometries differ by 0.05 eV, and the barrier between 4B and 4A structures is only 0.01-0.04 eV depending on the method. This can explain why in the case of CCSD(T) calculations the TS4.3 are lower in energy than 4B.

Figure S6: Comparison of the basis sets cc-PVTZ-PP with relativistic ECP and def2-TZVP for the CO_2 dissociation PES over Cu_4^* . The average difference between the reaction energies is 0.2 eV.

TPSSh/def2-TZVP

Figure S7: Natural charges of the Cu4⁺ adducts, using NBO calculations with TPPSh/def2-TZVP

Figure S8: The proposed intermediates of the dissociation of CO₂ on bare Cu₄⁺, Cu₄⁺ with molecularly adsorbed H₂, and Cu₄⁺ with dissociated H₂. The arrows show the energy differences between the geometries shown.

Figure S9: Detailed view of the dissociation pathway of H₂ on Cu₄⁺, connecting structures 19 and 22 (red path) in Figure 7b.

Figure S10: Detailed view of the dissociation pathway of H₂ on Cu₄⁺, connecting structures 8 and 17 (violet path) in Figure 7b.

Figure S11: Detailed view of the CO_2 reduction pathway on Cu_4^+ , connecting structures 14 (4H) and 24 (4A) in Figure 7c.

Table S1: Relative energies (E), zero-point energy corrected relative energies (E+ZPE) enthalpies (H) and Gibbs-free energies (G) with respect to the reactants of the structures described in the PES (Figure 7). The thermal corrections are computed at 298K and 1bar.

	E [eV]	(E+ZPE) [eV]	H [eV]	G [eV]
1	0.00	0.00	0.00	0.00
2	-0.54	-0.52	-0.50	-0.23
TS3	1.79	1.72	1.72	2.12
4	0.16	0.12	0.12	0.54
TS5	0.31	0.27	0.26	0.67
TS6	0.40	0.37	0.36	0.75
7	-0.44	-0.46	-0.46	-0.06
8	-0.50	-0.38	-0.42	-0.11
9	-0.99	-0.85	-0.88	-0.29
TS10	-0.62	-0.50	-0.54	0.04
TS11	-0.59	-0.53	-0.52	-0.06
12	-0.71	-0.59	-0.60	-0.03
TS13	0.04	0.04	-0.01	0.70
14	-1.06	-0.93	-0.99	-0.30
TS15	0.61	0.64	0.57	0.93
TS16	0.59	0.62	0.55	0.95
17	-0.65	-0.55	-0.61	-0.26
18	-1.35	-1.20	-1.25	-0.59
19	-0.34	-0.25	-0.27	0.00
20	-0.87	-0.76	-0.79	-0.18
TS21	1.02	1.01	0.95	1.31
22	-0.54	-0.44	-0.51	-0.16
TS23	-0.03	0.08	0.00	0.82
24	-1.89	-1.60	-1.69	-0.82

Table S2: XYZ coordinates of the different structures.

#	XYZ Coordinates				#	XYZ Coordinates					
Cu ₄	Cu	-0.00004	-1.16979	-0.00058		CO ₂	C	0.00000	0.00000	0.00000	
	Cu	-2.12004	-0.00007	0.00058			0	0.00000	0.00000	1.16338	
	Cu	0.00002	1.16996	-0.00058			0	0.00000	0.00000	-1.16338	
	Cu	2.12005	-0.00010	0.00058							
H ₂	Н	0.00000	0.00000	-0.37133		2	Cu	0.50205	0.02696	0.10907	
	Н	0.00000	0.00000	0.37133			Cu	-0.79079	2.09126	0.02200	
							Cu	-1.83309	-0.05296	-0.14140	
							Cu	-0.64432	-2.12001	0.02923	
							0	4.75416	0.03598	-0.36287	
							C	3.65393	0.07101	-0.03232	
тср	Cu	1 105 ()	1 25700	0 12501		4	0	2.53266	0.10921	0.31860	
155	Cu	1.18503	-1.25700	0.13501		4	Cu	2.0/983	1.14821	-0.00643	
	Cu	0 13081	0.80171	0.11704			Cu	0 58071	0.01070	0.00400	
	Cu	2 37097	0.84940	-0 /1298			Cu	2 65065	-1 17183	-0.001130	
	0	-1.68844	0.83709	0.75221			0	-1.18265	0.03766	0.01550	
	C	-3.03148	0.30867	-0.42186			C	-4.78736	-0.01451	-0.01099	
	0	-3.94874	0.95232	-0.61109			0	-5.91342	-0.03111	-0.02074	
TS5	0	0.88662	-0.28121	0.93936		TS6	Cu	0.65219	-1.26595	-0.24962	
	0	5.14906	0.23968	-1.04866			Cu	-2.08819	0.50173	0.14650	
	Cu	-0.65810	0.55340	0.76881			Cu	0.86740	1.08022	-0.34359	
	Cu	2.47965	-0.06680	0.15995			Cu	2.71551	-0.28120	0.34683	
	Cu	-1.73786	-1.32351	-0.17801			0	-0.70221	1.61177	0.24383	
	Cu	-2.60289	0.82366	-0.59939			С	-3.53580	-0.60070	0.08965	
	C	4.12853	0.11941	-0.58580			0	-4.42850	-1.28739	0.05097	
/	Cu	0.83083	-1.22/5/	0.38360		8	Cu	0.00042	-1.209/9	-0.01895	
	Cu	-2.04/95	1 22569	0.16085			Cu	-2.11033	-0.06695	0.01734	
	Cu	2 56/137	-0 01092	-0 77362			Cu	-0.00024	-0.00498	-0.01/27	
	0	-0 42933	0.01052	0.96416			н	-0.40773	2 86990	-0.02652	
	c	-3.70281	-0.00390	-0.57776			н	0.37321	2.87804	-0.01943	
	0	-4.73165	-0.00728	-1.03817							
9	Cu	0.525657	0.164314	0.024882		TS10	0	4.94724	0.00449	-0.05088	
	Cu	-1.036285	2.005350	-0.006241			0	2.62092	0.03405	-0.02036	
	Cu	-1.797195	-0.273749	-0.013923			Н	-0.60049	0.36584	-2.88037	
	Cu	-0.251694	-2.115144	0.001556			Н	-0.57892	-0.41432	-2.87006	
	0	4.827934	0.117415	-0.067331			Cu	-0.44553	-0.00109	1.20088	
	C	3.701279	0.339483	-0.005827			Cu	-0.90858	2.06733	0.08479	
	0	2.551914	0.575462	0.058186			Cu	-0.59608	-0.00250	-1.14/58	
	п	-3.300/39	-0.229033	-0.048192			Cu	2 70020	-2.07070	-0.03558	
T\$11	0	-4.76560	-0.992027	0.35234		12	C	-0.260532	-0.013301	-0.03558	
1311	0	-2.53937	-0.22011	-0.30251		12	Cu	0.995192	-1.990529	-0.136977	
	H	1.27965	0.10148	-3.46243			Cu	1.086728	0.060459	1.078346	
	Н	1.16004	0.26104	-2.74598			Cu	0.750701	2.071038	-0.162405	
	Cu	-0.51923	-0.06010	-0.05709			0	-4.143684	-0.160707	1.177287	
	Cu	0.85898	-2.06859	-0.02645			С	-3.338527	-0.133314	0.352941	
	Cu	1.79408	0.10545	0.30663			0	-2.518418	-0.104801	-0.485801	
	Cu	0.55509	2.12232	-0.02998			Н	-0.671430	0.285385	-2.616318	
	С	-3.66313	-0.14500	0.03494			Н	-0.591146	-0.483803	-2.600936	
TS13	0	-4.91926	0.04291	0.02966		14	Cu	-0.67075	-1.24014	-0.00011	
	0	-2.63669	-0.07917	-0.39387			Cu	-2.86750	-0.22235	0.00016	
	H	-0.11291	-0.60059	1.69491			Cu	-0.95730	1.26717	0.00003	
	H CH	-0.15011	0.05914	1.0/2/2			Cu L	1.18900	U.2326/ 1 75676	-0.00018	
		1 20033	1 20322	0.24954			п	1 00288	-1 3791/	-0.00010	
	Cu	1.15455	-0.01215	-1.43840			C	4.28882	-0.07782	0.00015	

	Cu	1 2/1577	_1 25222	0 62368		0	3 25//6	0.49160	-0.00011	
	Cu	2 79046	0.01571	0.02300		0	5.25440	0.40100	0.00011	
	C	-3.76940	-0.01571	-0.10780		0	5.50900	-0.00587	0.00041	
TS15	Cu	2.09687	0.26751	-0.00004	TS16	Cu	0.07197	-1.45831	0.47356	
	Cu	-0.13421	0.99032	-0.00002		Cu	-1.30528	0.11780	-0.75254	
	Cu	0.36266	-1.33618	0.00005		Cu	-0.05738	0.96029	1.03046	
	Cu	-2.27202	-0.05714	-0.00003		Cu	1.29821	0.25150	-0.73829	
	Н	0.12591	2,47200	0.00093		н	0.53922	1.89637	-0.19565	
	н	-1.67154	1.45731	0.00026		н	-0.75706	1.83637	-0.18672	
17	Cu	-0.00028	-1.30060	0.00340	18	Cu	0.478302	-1,178608	0.104729	
	Cu	-2.11655	0.01057	-0.00338	10	Cu	-1.301023	0.673982	0.079482	
	Cu	0.00006	1 17497	0.00332		Cu	1 097075	1 202191	-0 014284	
	Cu	2 11675	0.01037	-0.00374		Cu	2 806116	-0.482677	-0 104405	
	н	1 58005	1 51773	0.00374		н	2 71/0/2	1 12/1915	-0 12/293	
	н	-1 57950	1 51837	-0.01202		н	-0 33/328	1 915385	0.124255	
		-1.57550	1.51057	0.00120		0	-5.310650	-0.519365	-0.252776	
						0	4 190041	0.313200	0.232770	
						C	2 01 9 4 9 6	-0.414130	-0.087938	
10	Cu	0.06076	1 15652	0.00276	20	0	-3.010400	-0.329140	0.080241	
19	Cu	0.00970	-1.13032	0.00370	20	Cu	1 260629	1 964560	0.072283	
	Cu	-2.07811	1 15611	-0.00177		Cu	-1.200036	1.004509	0.007054	
	Cu	0.00976	1.15011	0.00302		Cu	-1./50000	-0.466704	-0.109744	
	Cu	2.20635	-0.00018	-0.00386		Cu	-0.094284	-2.234371	0.042624	
	н	-3.87904	-0.04520	-0.40022		0	4.720771	0.533115	-0.241781	
	н	-3.88595	0.01852	0.36702		C	3.594372	0.620387	-0.028099	
						0	2.445319	0.721781	0.198214	
						н	-1.762615	3.575516	0.448297	
						Н	-1.604578	3.639955	-0.302914	
TS21	Н	1.82276	-1.39837	0.00022	22	Cu	-0.00801	-1.29683	0.00001	
	н	3.18649	-1.10518	-0.00859		Cu	-2.06381	0.00000	-0.00001	
	Cu	0.06334	-1.10090	0.00211		Cu	-0.00801	1.29683	0.00001	
	Cu	2.15581	0.10838	-0.00143		Cu	1.96508	-0.00000	-0.00001	
	Cu	-0.21535	1.22047	0.00155		Н	1.66386	1.57622	-0.00001	
	Cu	-2.17654	-0.14162	-0.00194		Н	1.66385	-1.57622	-0.00001	
TS23	Cu	-0.11437	-0.98649	-0.00024	24	Cu	-0.03757	-0.95989	-0.00003	
	Cu	-2.50561	-0.77116	0.00025		Cu	-2.41030	-0.60367	0.00004	
	Cu	-1.14919	1.16912	-0.00017		Cu	-0.96588	1.27836	-0.00003	
	Cu	1.32949	1.23173	0.00006		Cu	1.47067	1.10330	0.00002	
	н	0.10874	2.19675	-0.00036		н	0.37658	2.21337	0.00002	
	н	1.46117	-1.28465	-0.00045		н	3.61142	-1.97256	-0.00014	
	C	2.91873	-0.96904	0.00008		C	2.72222	-1.33646	0.00008	
	0	2.96094	0.26320	0.00051		0	2.90646	-0.08614	0.00002	
	0	3.49759	-1.98205	-0.00012		0	1.59707	-1.90722	-0.00004	