Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Manifolds of low energy structures for a magic number of hydrated sulfate :

 $SO_4^{2-}(H_2O)_{24}$ [†]

Electronic Supplementary Information

Carine Clavaguéra, ${}^{\ast a}$ Florian Thaunay, b and Gilles Ohanessian ${}^{\ast b}$

^a Institut de Chimie Physique, Université Paris-Saclay - CNRS, UMR 8000, 91405 Orsay, France; E-mail: carine.clavaguera@universite-paris-saclay.fr

^b Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France; E-mail: gilles.ohanessian@polytechnique.edu † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 00.0000/00000000.

Journal Name, [year], [**vol.]**, 1–7 | 1

Calibration of density functionals

Final calibration calculations were carried out at the DLPNO-CCSD(T)/aug-cc-pVTZ// ω B97X-D/cc-pVTZ level for 9 low-energy structures of $SO_4^{2-}(H_2O)_{24}$. Such calculations were found to be too involved to be carried out more extensively. The cc-pVTZ basis was used instead in further DLPNO calculations. A calibration study for the 9 structures mentioned above can be found in Table S1, in which all relative energies are corrected for zero-point energies computed at the geometry optimization level. It can also be seen that relative energies differ at most by 1.8 kJ.mol⁻¹ between ω B97X-D/aug-cc-pVTZ and DLPNO-CCSD(T)/cc-pVTZ. Thus ω B97X-D/aug-cc-pVTZ was deemed sufficiently accurate and kept for all final energy calculations. The better performance of M11 for small clusters in which sulfate-water interactions are dominant is less important in the present size range where all isomers have relatively similar interactions between sulfate and first-shell water molecules and it is the water network which is more discriminant.

Table S1 Calibration study on 0 K energetics of selected structures of $SO_4^{2-}(H_2O)_{24}$. M11, ω B97X-D and CCSD(T) values are computed at the M11/cc-pVTZ, ω B97X-D/cc-pVTZ and ω B97X-D/cc-pVTZ optimized geometries, respectively. All relative energies (in kJ.mol⁻¹) are corrected for zero-point energies computed at the geometry optimization level.

Structure name	M11	M11	ω B97X-D	ω B97X-D	CCSD(T)	CCSD(T)
	cc-pVTZ	aug-cc-pVTZ	cc-pVTZ	aug-cc-pVTZ	cc-pVTZ	aug-cc-pVTZ
W24-A	0.0	0.0	0.0	0.0	0.0	0.0
W24-B	-15.1	-9.6	-0.9	1.8	0.6	3.6
W24-C	-9.2	-5.9	0.7	2.5	2.2	4.0
W24-D	-10.6	-6.1	2.6	4.0	2.1	3.8
W24-E	-8.8	-4.7	2.1	4.2	2.8	4.3
W24-F	-5.1	-4.0	3.2	4.4	3.2	3.7
W24-G	-11.4	-6.8	6.6	7.7	8.5	10.9
W24-H	-13.1	-7.3	6.0	9.7	7.1	9.4
W24-I	-10.5	-4.1	10.1	12.3	13.3	15.0

Fig. S1 Correlation of ω B97X-D/cc-pVTZ and DLPNO-CCSD(T)/cc-pVTZ relative energies, without zero-point energy correction, for the 7-11 most stable structures of each of the seven families. Relative energies are given in kJ.mol⁻¹.

Fig. S2 Correlation of ω B97X-D/cc-pVTZ and DLPNO-CCSD(T)/cc-pVTZ relative energies, with zero-point energy correction, for the 7-11 most stable structures of each of the seven families. Relative energies are given in kJ.mol⁻¹.

Fig. S3 Correlation between relative energies at 0 K and free energies at 298 K at the ω B97X-D/cc-pVTZ level. Relative energies are given in kJ.mol⁻¹.

Fig. S4 Structure of the W24-5 family.

Fig. S5 Structure of the W24-6 family.

Fig. S6 IR spectra of the five most stable structures of W24-1 and W24-2 in the 3000-3800 cm $^{-1}$ range.

Fig. S7 A structure of $MnO_4^-(H_2O)_{24}$ from W24-6 with one dangling O-H bond (green).