SUPLEMENTARY INFORMATION

Identification of the Acetaldehyde Oxide Criegee Intermediate Reaction Network in the Ozone-Assisted Low-Temperature Oxidation of *trans-2-*Butene

Alan R. Conrad,^a Nils Hansen,^b Ahren W. Jasper,^c Natasha K. Thomason,^a Laura Hidaldo-Rodrigues,^a Sean Treshock,^a and Denisia M. Popolan-Vaida^{a,*}

^a Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA ^b Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA ^c Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA

^{*} Author to whom correspondence should be addressed. E-mail: denisia.popolan-vaida@ucf.edu, Tel: 407-823-1537.

Figure S1: Mole fraction temperature profile of *trans*-2-butene concentration.

Figure S2. PIE scans of the signal recorded at (a) m/z = 48.021 (CH₄O₂), (b) m/z = 62.037 (C₂H₆O₂), and (c) m/z = 90.068 at a temperature of 425 K. The observed ionization thresholds are close to the calculated values for CH₃OOH, C₂H₅OOH, and C₄H₉OOH, respectively. The observed PIE curve of the CH₄O₂ signal resembles the one sampled by Moshammer et al.¹

Figure S3. Experimentally measured mole fraction temperature profiles of (a) CH₃OOH and (b) C_2H_5OOH concentrations. The conversion of the mass spectra in mol fraction profiles is performed using a procedure described in literature,²⁻³ using the cross section reported by Moshammer et al.¹ for CH₃OOH and Rousso et al.⁴ for C₂H₅OOH. The low-temperature oxidation region and the negative-temperature coefficient region are clearly observed. CH₃OOH and C₂H₅OOH are present only in the temperature region below 600 K.

Figure S4. PIE scans of the signal recorded at (a) m/z = 76.016 (C₂H₄O₃) and (b) m/z = 88.052 (C₄H₈O₂) at a temperature of 425 K. The observed ionization thresholds match the calculated values for hydroperoxy-acetaldehyde⁴ and but-1-enyl-3-hydroperoxide⁵.

Figure S5. Experimentally measured glyoxal ($C_2H_2O_2$, m/z = 58.005) signal intensity as a function of temperature. The signal is recorded at a photon energy of 10.5 eV, which is slightly above the ionization energy of glyoxal.

Figure S6. Experimentally measured diacetyl (C₄H₆O₂, m/z = 86.037) signal intensity as a function of temperature recorded at a photon energy of 10.0 eV.

Table S1: Products identified in the ozone-assisted oxidation reaction of *trans*-2-butene in three different temperature regions. The values of the ionization energies displayed in the table are either adapted from NIST Chemistry WebBook,⁶ from literature (italicized values), or are calculated in this study (bolded values).

		Compounds	
M (g/mol)	Formula	Name	energy (eV)
	J	SR temperature < 600 K	
16.031	CH_4	methane	12.61
18.010	H ₂ O	water	12.62
26.015	C_2H_2	acetylene	11.40
27.994	СО	carbon monoxide	14.01
30.010	CH ₂ O	formaldehyde	10.88
30.046	C_2H_6	ethane	11.52
32.026	CH ₄ O	methanol	10.84
42.010	C_2H_2O	ketene	9.61
42.046	C_3H_6	propene	9.73
43.989	CO ₂	carbon dioxide	13.77
44.026	C_2H_4O	acetaldehyde	10.22
46.005	CH ₂ O ₂	formic acid	11.33
40.021	CH ₄ O	methyl hydroperoxide	9.83 ¹
58.005	$C_2H_2O_2$	glyoxal	10.20
60.021	$C_2H_4O_2$	acetic acid	10.65
		glycolaldehyde	9.98^{4}
62.036	$C_2H_6O_2$	ethyl hydroperoxide	<i>9.61</i> ¹
66.046	C ₅ H ₆	1,3-cyclopentadiene	8.57
76.019	$C_2H_4O_3$	hydroperoxyl acetaldehyde	9.80
78.031	$C_2H_6O_3$	hydroxyethyl hydroperoxide	9.55
86.036	$C_4H_6O_2$	diacetyl	9.30
88.052	$C_4H_8O_2$	but-1-enyl-3-hydroperoxide	9.33
90.031	C ₃ H ₆ O ₃	3-methyl-1,2,4-trioxolane	9.41
90.068	$C_4H_{10}O_2$	butyl hydroperoxide	9.40
104.047	$C_4H_8O_3$	3-hydroperoxybutan-2-one	9.29
116.083	$C_{6}H_{12}O_{2}$	4-hydroxy-3-methylpentan-2-one	9.32
	600 K	K < JSR temperature < 800 K	
42.046	C ₃ H ₆	propene	9.73
54.046	C ₄ H ₆	1,3-butadiene	9.07
70.041	C ₄ H ₆ O	2-butenal	9.75
86.036	$C_4H_6O_2$	diacetyl	9.30
	J	SR temperature > 800 K	•
16.031	CH ₄	methane	12.61
18.010	H ₂ O	water	12.62
26.015	C ₂ H ₂	acetylene	11.40
27.994	СО	carbon monoxide	14.01
28.031	C ₂ H ₄	ethylene	10.51
30.010	CH ₂ O	formaldehyde	10.88
30.046	C_2H_6	ethane	11.52
40.031	C ₃ H ₄	allene	9.69
		propyne	10.36

42.046	C_3H_6	propene	9.73
43.989	CO_2	carbon dioxide	13.77
54.046	C_4H_6	1,3-butadiene	9.07
66.046	C_5H_6	1,3-cyclopentadiene	8.57

References

- Moshammer, K.; Jasper, A. W.; Popolan-Vaida, D. M.; Lucassen, A.; Diévart, P.; Selim, H.; Eskola, A. J.; Taatjes, C. A.; Leone, S. R.; Sarathy, S. M.; Ju, Y.; Dagaut, P.; Kohse-Höinghaus, K.; Hansen, N., Detection and Identification of the Keto-Hydroperoxide (HOOCH₂OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. *J. Phys. Chem. A* 2015, *119*, 7361-7374.
- Schenk, M.; Leon, L.; Moshammer, K.; Oßwald, P.; Zeuch, T.; Seidel, L.; Mauss, F.; Kohse-Höinghaus, K., Detailed mass spectrometric and modeling study of isomeric butene flames. *Combust. Flame* 2013, *160*, 487-503.
- 3. Egolfopoulos, F. N.; Hansen, N.; Ju, Y.; Kohse-Höinghaus, K.; Law, C. K.; Qi, F., Advances and challenges in laminar flame experiments and implications for combustion chemistry. *Prog. Energy Combust. Sci.* **2014**, *43*, 36-67.
- 4. Rousso, A. C.; Hansen, N.; Jasper, A. W.; Ju, Y., Low-temperature oxidation of ethylene by ozone in a jet-stirred reactor. *J. Phys. Chem. A* **2018**, *122*, 8674-8685.
- Bourgalais, J.; Gouid, Z.; Herbinet, O.; Garcia, G. A.; Arnoux, P.; Wang, Z.; Tran, L.-S.; Vanhove, G.; Hochlaf, M.; Nahon, L.; Battin-Leclerc, F., Isomer-sensitive characterization of low temperature oxidation reaction products by coupling a jet-stirred reactor to an electron/ion coincidence spectrometer: case of n-pentane. *Phys. Chem. Chem. Phy.* **2020**, *22*, 1222-1241.
- NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303