Supporting information for

Role of nanoparticle network in polymer mechanical reinforcement: Insights from molecular dynamics simulations

Xiu Li^a, Ziwei Li^c, Jianxiang Shen^d, Zijian Zheng^{a*}, Jun Liu^{b*}

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China

^bKey Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China

^cCollege of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.

^dDepartment of Polymer Materials and Engineering, Jiaxing University, Jiaxing, 314001, China.

The e-mail address of corresponding author: zhengzj@hubu.edu.cn; liujun@mail.buct.edu.cn.

Fig. S1. (a, c) The variation of mean squared end-to-end distance R_{end}^2 , radius of gyration R_g^2 and (b, d) the change of the potential energy of the two systems in the following 1.0×10^6 MD steps after enough equilibration with *NVT* ensemble. For a and b, the NP-polymer interaction strength ε_{np} equals 2.0, NP-NP interaction strength ε_{nn} equals 20.0, and r_{cutoff} equals 2.5. For c and d, the NP-polymer interaction strength ε_{np} equals 2.0, NP-NP interaction strength ε_{nn} equals 50.0, and r_{cutoff} equals 2.5.

Fig. S2. Radial distribution function (RDF) of NPs for systems with different NP-NP interactions ε_{nn} . Note that the NP-polymer interaction strength ε_{np} equals 2.0, r_{cutoff} equals 2.5.

Fig. S3. Plot of the first layer content with respect to the NP-NP interactions ε_{nn} . Note that the NP-polymer interaction strength ε_{np} equals 2.0, r_{cutoff} equals 2.5.

Fig. S4. Incoherent intermediate dynamic structure functions ($\phi_q^s(t)$) for the different polymer layer (from layer 1 to layer 5) around NPs in PNCs with different NP-NP interactions ε_{nn} at the segment length scale. (a) $\varepsilon_{nn} = 1.0$. (b) $\varepsilon_{nn} = 20.0$. (c) $\varepsilon_{nn} = 50.0$. The thickness of each polymer layer is unified as 1 σ . Note that the NP-polymer interaction strength ε_{np} equals 2.0, r_{cutoff} equals 2.5.

Fig. S5. The conductive probability of the nanocomposites at various volume fraction. Note that the NP-polymer interaction strength ε_{np} equals to 2.0, NP-NP interaction strength ε_{nn} equals 50.0, and r_{cutoff} equals 2.5.

Fig. S6. Incoherent intermediate dynamic structure functions ($\phi_q^s(t)$) for the different polymer layer (from layer 1 to layer 5) around NPs in PNCs with different NP-polymer interactions ε_{np} at the segment length scale. (a) $\varepsilon_{np} = 2.0$. (b) $\varepsilon_{np} = 5.0$. (c) $\varepsilon_{np} = 8.0$. The thickness of each polymer layer is unified as 1 σ . Note that the NP-NP interaction strength ε_{nn} equals 1.0, r_{cutoff} equals 2.5.