Supporting Information

Exploring the Emerging of Electronic and Magnetic Properties with Adatom Adsorption on Novel Semiconduction Monolayer: N$_2$P$_6$

Xinle Lu1,2, Liao­xin Sun2, Bing Fu3, Shoutian Sun1* and Xiang Ye1*

1Department of Physics, Shanghai Normal University, Shanghai 200234, P. R. China
2State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, P. R. China
3Fuzhou Medical College of Nanchang University, Fuzhou 344000, P. R. China

Corresponding Author: stsun@shnu.edu.cn (Shoutian Sun), yexiang@shnu.edu.cn (Xiang Ye)

Figure S1. (a) The calculated phonon spectrum of N$_2$P$_6$ monolayer. (b) The evolution of total energies on N$_2$P$_6$ monolayer during FPMD simulation at 300 K.

* Email address: stsun@shnu.edu.cn (Shoutian Sun), yexiang@shnu.edu.cn (Xiang Ye)
Figure S2. The top view of difference charge density with pristine N\textsubscript{2}P\textsubscript{6} (isosurfaces = 0.01 e(\textsubscript{\text{Å}}3)-1). Brown dots are P atoms, and others are N atoms.
Figure S3: The band structures of three monolayers: (a) N$_2$P$_6$, (b) H-N$_2$P$_6$, and (c) S-N$_2$P$_6$ using PBE (left panel) and HSE06 (right panel), respectively. The Fermi level is set at 0 eV.
Figure S4. Variation of structural parameters for different adatoms adsorbed on N$_2$P$_6$ at the TN (light blue area), T$_P$ (light green area), H$_{PP}$ (light red area) sites. Δl (\(\Delta l=lp-lp_{(sub)}\)) is used to describe in-plane distortion, and out-plane distortion is described by Δh (\(\Delta h=h-h_{(sub)}\)). Relative angle ($\Delta \theta=\theta-\theta_0$, \(\theta_0=88.889^\circ\)) is defined as the maximum variation of angle θ made up by adatoms nearest P atom and its first and second bond length of P-P.
Figure S5. The top view and side view of difference charge density for P adatom adsorbed on pristine N_2P_6 (isosurfaces = 0.02 e(Å3)$^{-1}$). Brown dots are P atoms, and others are N atoms.