- ¹ Supplementary Information-I for
- 2 Investigation of Nonadiabatic Dynamics in
- ³ Photolysis of Methyl Nitrate (CH₃ONO₂) by
- 4 On-the-fly Surface Hopping Simulation

5 Juanjuan Zhang^{\dagger ‡}, Jiawei Peng^{\dagger ‡}, Deping Hu^{\dagger ‡*}, Zhenggang Lan^{\dagger ‡*}

[†]SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of
Chemical Pollution and Environmental Safety & MOE Key Laboratory of
Environmental Theoretical Chemistry, South China Normal University, Guangzhou
510006, China

- 10 [‡]School of Environment, South China Normal University, Guangzhou 510006, China
- 11
- 12 *E-mail: zhenggang.lan@m.scnu.edu.cn; zhenggang.lan@gmail.com(ZL);
- 13 hudp1990@gmail.com(DH)
- 14

1 S1. Electronic-Strucuture Calculations

4 Figure S1: Active space orbitals in the XMS(4)-CASPT2(12,9)/def2-SVPD
5 calculations. The same active space was used in the SA (4)-CASSCF(12,9) calculations.

- 6
- 7

1 Table S1. Important geometrical parameters at S₀-min and S₁-min.

	r _a (Å)	r _b (Å)	rc(Å)	r _d (Å)	r _e (Å)	$\theta_{a}(^{\circ})$	$ au_a(^\circ)$
S ₀ -min	1.42	2.25	2.18	1.21	1.20	130.0	0
S ₁ -min	1.39	2.32	2.23	1.27	1.32	109.0	26.8

1 Table S2. Relative energies (eV) at the S_0 -min, S_1 -min, and MECIs.

state	S_0	S_1	S_2	S_3
S ₀ -min	0	4.84	5.76	6.54
S ₁ -min	2.06	3.74	5.54	7.27
CI ₁₀ -I	1.91	1.93	5.94	5.97
CI ₁₀ -II	3.92	3.93	4.52	4.54
CI ₁₀ -III	4.45	4.57	5.38	5.48
CI ₂₁ -I	4.38	4.42	4.61	4.71
CI ₂₁ -II	5.60	5.61	5.61	5.62
CI ₂₁ -III	4.21	4.33	4.33	4.45
CI ₂₁ -IV	4.93	5.01	5.39	5.41
CI ₃₂ -I	2.31	4.52	5.87	6.01
CI ₃₂ -II	4.48	4.50	4.69	4.72
CI ₃₂ -III	3.65	3.67	4.39	4.41
CI32-IV	2.24	2.34	5.35	5.48
CI ₃₂ -V	3.32	3.44	7.60	7.72

2 Figure S2: The transition orbitals of the S_1 state of S_0 -min (a) and S_1 -min (b).

1 Table S3. Critical geometrical parameters at MECIs.

CIs	r _a (Å)	r _d (Å)	r _e (Å)	$\theta_a(^\circ)$	$\tau_a(^\circ)$
CI ₁₀ -I	3.11	1.21	1.17	133.5	81.2
CI ₁₀ -II	3.19	1.16	1.45	110.3	90.4
CI ₁₀ -III	1.35	1.44	1.30	95.1	34.2
CI ₂₁ -I	2.84	1.63	1.14	109.6	72.8
CI ₂₁ -II	1.35	1.19	3.76	79.9	28.3
CI ₂₁ -III	2.91	1.13	1.83	108.8	72.7
CI ₂₁ -IV	1.36	1.37	1.37	95.0	40.9
CI ₃₂ -I	1.32	1.55	1.28	123.4	1.0
CI ₃₂ -II	3.05	1.13	1.71	109.3	98.1
CI ₃₂ -III	3.12	1.35	1.22	109.2	106.5
CI ₃₂ -IV	3.13	1.23	1.23	131.8	103.5
CI ₃₂ -V	3.09	1.18	1.20	169.2	0.3

Figure S3: Energies of the S_1 - S_0 CI₁₀-seams along with the bond r_a : CI₁₀-seam-I (green line); CI₁₀-seam-II (orange line); CI₁₀-seam-III (black line). The CI₁₀-seams were calculated with the constrained optimization at the SA(2)-CASSCF(12,9)/def2-SVPD level. For comparison, the minimum-energy geometry of CI₁₀-seam-I was set as zero.

1 S3. Typical Trajectories

2 Here the representative trajectories towards to different photolysis channels are given in Figure S4-S7. We show the total energy, kinetic energy, and all involved 3 4 potential energies for the representative trajectories before the S₁-S₀ hops, see Figure 5 S4-S7 (a). This shows that energy conservation is basically acceptable before the 6 nonadiabatic decay to the ground electronic state. After the internal conversion to the 7 ground state, the electronic-structure problems may take place at any time due to the 8 highly-distorted geometries, and energy conservation may not strictly be satisfied. 9 However, the excessive energy anyway pushes the system towards the dissociation 10 limit, where the quasi-degeneracy of low-lying electronic states exists due to symmetry 11 reasons. This can be viewed by the energy difference in the dissociation limit, see Figure S4-S7 (b). 12

13 Typical trajectories passing CI₁₀-I, CI₁₀-II, and CI₁₀-III were discussed in Figure 14 S4, S5, and S6, respectively. In all above channels, the photolysis products are only 15 $CH_3O + NO_2$, and two lowest states may become nearly degenerated in the dissociation 16 limit. The $CH_3O + NO + O$ channel does not play an major role in the dynamics starting 17 from S₁, while this channel becomes important when the trajectories are initialized from 18 a higher state. Figure S7 shows a typical trajectory of this channel, which starts from 19 S₃. Note that four lowest electronic states become almost degenerated in the 20 dissociation limit.

1

Figure S4: Time-dependent properties of a typical trajectory initialized from S₁ via the CI₁₀-I: (a) potential energies of relevant electronic states, total, and kinetic energies before S₁-S₀ hops; (b) energy gaps between S₁ and S₀ towards the CH₃O + NO₂ channel; (c-d) geometric parameters (c): r_a , r_d , and r_e , (c): θ_a and τ_a as functions of simulation time.

9 Figure S5: Time-dependent properties of a typical trajectory initialized from S_1 via the 10 CI_{10} -II: (a) potential energies of relevant electronic states, total, and kinetic energies 11 before S_1 - S_0 hops; (b) energy gaps between S_1 and S_0 towards the CH₃O + NO₂ channel; 12 (c-d) geometric parameters (c): r_a , r_d , and r_e , (d): θ_a and τ_a as functions of simulation 13 time.

Figure S6: Time-dependent properties of a typical trajectory started from S₁ via CI₁₀-III: (a) potential energies of relevant electronic states, total, and kinetic energies before S₁-S₀ hops; (b) energy gaps between S₁ and S₀ towards the CH₃O + NO₂ channel; (c–d) geometric parameters (c): r_a , r_d , and r_e , (d): θ_a and τ_a as functions of simulation time.

7

8

9 Figure S7: Time-dependent properties of a typical trajectory initialized from S_3 via 10 CI₁₀-III: (a) potential energies of relevant electronic states, total, and kinetic energies

11 before S_1 - S_0 hops; (b) energy gaps of S_1 and S_0 , S_2 and S_0 , and S_3 and S_0 , respectively

12 towards the CH₃O + NO + O channel; (c–d) geometric parameters (c):
$$r_a$$
, r_d , and r_e , (d):

13 θ_a and τ_a as functions of simulation time

1 S4. Additional Results of the TSH Dynamics from S_2 and S_3

Figure S8: Distribution of the important geometric parameters at the first S₁ to S₀ hops
within 80 fs: (a) and (b): initiated from S₂ state; (c) and (d): initiated from S₃ state. In
all panels, the green dotted line, orange dashed line, and black solid line marks the CI₁₀seamI, CI₁₀-seamII, and CI₁₀-seamIII, respectively.

1Time (fs)Time (fs)2Figure S9: Time-dependent properties of a typical trajectory initialized from S3 state3displays degeneracy at hops: (a) energy gaps of S1 and S0, S2 and S0, and S3 and S0,4respectively towards the CH3O + NO2 channel; (b) geometric parameters θ_a as functions5of simulation time.