A comparative DFT study of the oxidation of Al crystals and

nanoparticles

Supporting information

Table of Content

Figure S1. Structures of ANPs (Aln)4
Figure S2. Formation energy of Al _n 4
Figure S3. Low energy isomers of Al ₃₄ , Al ₄₈ , and Al ₆₄ 5
Figure S4. Energy difference between clusters with the Wulff structure and ball- like structure
Figure S5. The stability of Al ₃₄ tested by AIMD at 300 K6
Figure S6. The adsorption energy and cluster deformation energy of O* adatoms at different sites of different ANPs7
Figure S7. (a) Stepwise O adsorption energy as a function of the O coverage for Al surfaces and clusters. (b) Structure of Al ₆₄ at 0.38 ML and Al ₃₄ at 0.25 ML of O coverage
Figure S8. Surface restructure of Al(110) and Al(100)8
Figure S9. Optimized structures of O* adsorbed on Al ₂₂₅
Figure S10. Selected low energy configurations of O adsorbed on ANPs10
Figure S11. Phase diagram O chemisorbed on Al(111)11
Figure S12. AlxOy clusters11
Table S1. The O adsorption energy over Al ₂₂₅ and Al(111)
Table S2. Energy difference of optimized clusters before adsorbing O atoms andafter removing the adsorbed O atoms
Table S3. Imaginary frequencies of transition states12
Table S4. The symmetry of AlxOy monomers12

Al₁₉ (7.5 Å, D_{5h})

Al₂₃ (7.7 Å, D_{3h})

Al₂₉(11.1 Å, C₁)

 $Al_{34}(8.9 \text{ Å}, C_1)$

 $Al_{40} (10.1 \text{ Å}, C_1)$

 $Al_{48}(10.5 \text{ Å}, C_1)$

Al₅₅ (11.6 Å, C₁)

Al₆₄(11.2 Å, C₁)

Al₇₂(11.5 Å, C_{2v})

Al₇₈(13.2 Å, C₁)

 $\label{eq:algorithm} \begin{array}{ll} Al_{85}(12.8\text{\AA},\,C_1) & Al_{92}(13.1\text{\AA},\,C_{3v}) \\ Figure \ S1. \ Structures \ of \ ANPs \ (Al_n). \ Their \ longest \ diameter \ and \ point \ group \ are \ labeled. \end{array}$

Figure S2. Formation energy of Al_n. $E_f(eV) = (E_{cluster} - nE_{Al}) / n$. E_{Al} is the energy of an isolated Al atom.

Figure S3. Low energy isomers of Al₃₄, Al₄₈, and Al₆₄. Relative energy is labeled for each structure.

 Al_{19}

0.00

0.86 eV


```
0.00
```

0.89 eV

 Al_{85} Figure S4. Energy difference between clusters with the Wulff structure and ball-like structure.

Figure S5. The stability of Al_{34} tested by AIMD at 300 K.

Figure S6. The adsorption energy and cluster deformation energy of O* adatoms at different sites of different ANPs. (a) Al₃₄, (b) Al₄₈, and (c) Al₆₄.

Figure S7. (a) Stepwise O adsorption energy as a function of the O coverage for Al surfaces and clusters. (b) Structure of Al_{64} at 0.38 ML and Al_{34} at 0.25 ML of O coverage. The stepwise O

adsorption energy is defined as: $E_{ads} = E_{(N+1)O/substrate} - E_{NO/substrate} - \frac{1}{2}E_{O_2}$ The two most stable configurations at their own coverages are used for the calculation.

Figure S8. Surface restructure of Al(110) and Al(100).

Figure S9. Optimized structures of O* adsorbed on Al₂₂₅.

0.00

0.23 eV

0.38 eV

0.00

0.45 eV

Al₄₈

0.00

0.22 eV

0.00

0.49 eV

Figure S10. Selected low energy configurations of O adsorbed on ANPs. Configurations in the same row have the same O coverage and their relative energies are labeled.

Figure S11. Phase diagram O chemisorbed on Al(111).

Figure S12. Al_xO_y clusters. (a) Dimers of Al_xO_y . (b) Al_2O_3 monomer, dimer and trimer.

Table 51. The O adsorption energy over 11225 and 11(111).								
		Al ₂₂₅		Al(111)				
Number of O	1	2	3	1	2	3		
E _{ad} (eV)	-4.27	-4.42	-4.53	-4.29	-4.40	-4.50		
Lateral O-O interaction		0.15			0.11			
(eV)								

Table S1. The O adsorption energy over Al₂₂₅ and Al(111).

 Table S2. Energy difference of optimized clusters before adsorbing O atoms and after removing the adsorbed O atoms.

	8		
	Al ₃₄	Al_{48}	Al ₆₄
Θ		$\Delta E (eV)$	
1/16	0.000	0.027	0.000
1/4	0.005	0.043	0.064
1/2	0.004	0.055	0.021

Table S3. Imaginary frequencies of transition states.

Diffusion	In-surface	Surface to 1 st sub	In-1 st sub				
Imaginary frequency (cm ⁻¹)	fcc to hcp	fcc to tet1	tet1 to oct				
Isolated O	-199	-167	-94				
(Sub)surface 1 ML O	-259	-276	-200				

Table 54. The symmetry of M _x O _y monomers.											
monomers	AlO	Al_2O	Al ₃ O	Al ₄ O	Al ₅ O	Al ₆ O	AlO_2	AlO ₃	AlO ₄	AlO_5	AlO_6
symmetry	C_{nv}	D _{nh}	C_{2v}	D_{4h}	C1	C_s	D_{nh}	C_{2v}	D_{4d}	C_1	C_1

Table S4. The symmetry of Al_xO_y monomers