Supplementary Information

Pressure-induced superconducting CS₂H₁₀ with H₃S framework

Mingyang Du¹, Zihan Zhang¹, Tian Cui^{2,1,*}, Defang Duan^{1,*}

¹ College of Physics, Jilin University, Changchun 130012, People's Republic

of China

² Institute of High Pressure Physics, School of Physical Science and

Technology, Ningbo University, Ningbo, 315211, People's Republic of China

*Correspondence authors. cuitian@jlu.edu.cn, duandf@jlu.edu.cn

FIGURES

Fig. S1 The phonon dispersion curves and phonon density of states (PHDOS) of *P*-3*m*1 and *Pm* at different pressures.

Fig. S2 The electronic band structures and PDOS of P-3m1, Pm, Cmc21 and P3m1 at different pressures.

TABLES

Table S1	Lattice	parameters	and	atomic	positions	of	$Cmc2_1$,	<i>P</i> 3 <i>m</i> 1	, <i>P</i> -3 <i>m</i> 1	and	Ρm	phases	at	different
pressures.														

Structure	Parameters	Atom	X	У	Z	
of CS ₂ H ₁₀	(Å, deg)					
$Cmc2_1$	a=b= 5.0732	Н	-0.53941	0.06501	-0.43604	
(150 GPa)	c= 4.2955	Н	-0.15952	0.33346	-0.84568	
	α=β= 90	Н	-0.33996	0.16820	-0.84831	
	γ= 49.8075	Н	-0.12439	0.87561	-0.10929	
		Н	-0.55998	0.44002	-0.59198	
		Н	-0.23214	0.76786	-0.61037	
		Н	-0.29158	0.70842	-0.28471	
		С	-0.23823	0.76177	-0.06931	
		S	-0.41412	0.58588	-0.60062	
		S	-0.07965	0.92035	-0.59928	
P3m1	a=b= 4.7290	Н	0.85970	0.14030	0.95335	
(50 GPa)	c=2.8440	Н	0.21072	0.78928	0.20212	
	α=β= 90	Н	0.53725	0.07449	0.62299	
	γ=120.0000	Н	0.33333	0.66667	0.69066	
		С	0.33333	0.66667	0.06473	
		S	0.66667	0.33333	0.30778	
		S	1.00000	1.00000	0.63792	
P-3m1	a=b= 5.8103	Н	0.08312	0.37174	0.31215	
(100 GPa)	c= 2.7549	Н	0.22373	0.11187	0.28652	
	α=β= 90	Н	0.66667	0.33333	0.58654	
	γ= 120.0000	С	0.66667	0.33333	0.20404	
		S	0.50000	0.00000	0.00000	
		S	0.00000	0.00000	0.00000	
Pm	a= 6.9823	Н	0.81047	0.69036	0.04784	
(200 GPa)	b=4.4790	Н	0.88363	0.74296	0.55578	
	c= 3.1308	Н	0.17630	0.70927	0.70906	
	α=γ= 90	Н	0.20833	0.24000	0.21629	
	β= 102.9245	Н	0.49729	0.19383	0.83501	
		Н	0.56975	0.21541	0.39789	
		Н	0.36898	0.50000	0.78034	
		Н	0.03059	0.50000	0.12223	
		Н	0.59465	0.50000	0.07694	
		Н	0.68220	0.50000	0.59743	
		Н	0.72399	0.00000	0.93378	
		Н	0.29172	0.00000	0.57489	
		Н	0.36428	0.00000	0.14275	

Н	0.05633	0.00000	0.61830
C	0.72193	0.50000	0.94374
C	0.41233	0.00000	0.84683
S	0.36374	0.50000	0.30124
S	0.03226	0.50000	0.62806
S	0.71467	0.00000	0.45929
S	0.04795	0.00000	0.13040

Equations for calculating T_c and related parameters

(1) The Allen–Dynes-modified McMillan equation

 T_c can be estimated by the McMillan equation¹:

$$T_{c} = \frac{\omega_{log}}{1.2} exp \left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*} (1+0.62\lambda)} \right]$$
(1)

where λ and ω_{log} are the electron-phonon coupling constant and the logarithmic-averaged phonon frequency, respectively, and μ^* is the Coulomb pseudopotential, for which we use the widely accepted range of 0.1-0.13. λ and ω_{log} are given by

$$\lambda = 2 \int_{0}^{\infty} \frac{\alpha^2 F(\omega)}{\omega} d\omega$$
⁽²⁾

and

$$\omega_{log} = exp^{[io]} \left(\frac{2}{\lambda} \int_{0}^{\infty} \frac{d\omega}{\omega} \alpha^{2} F(\omega) \ln \omega \right)$$
(3)

The parameter ω denotes the phonon frequency, and $\alpha^2 F(\omega)$ is the Eliashberg spectral function

$$\alpha^{2}F(\omega) = \frac{1}{2\pi N(\varepsilon_{F})} \sum_{qv} \frac{\gamma_{qv}}{\omega_{qv}} \delta(\omega - \omega_{qv})$$
⁽⁴⁾

The line width $\gamma_{q,\nu}$ is written as

$$\gamma_{qv} = \pi \omega_{qv} \sum_{mn} \sum_{k} \left| g_{mn}^{\nu}(k,q) \right|^2 \delta(\varepsilon_{m,k+q} - \varepsilon_F) \times \delta(\varepsilon_{n,k} - \varepsilon_F)$$
(5)

where $\varepsilon_{n,k}$ is the energy of the bare electronic Bloch state, ε_F is the Fermi energy, and $g_{mn}^{\nu}(k,q)$ is the electron-phonon matrix element.

When the value of λ larger than 1.3, strong-coupling corrections begin to appear. Therefore, P. B. Allen and R. C. Dynes use two separate correction factors (f_1 and f_2) to describe these two effects. Then we can further obtain the Allen–Dynes-modified McMillan equation²:

$$T_{c} = \frac{f_{1}f_{2}\omega_{log}}{1.2}exp\left[-\frac{1.04(1+\lambda)}{\lambda-\mu^{*}(1+0.62\lambda)}\right]$$
(6)

 $f_{1 \text{ and }} f_{2 \text{ are given by}}$

$$f_1 = \sqrt[3]{\left[1 + \left(\frac{\lambda}{2.46(1+3.8\mu^*)}\right)^{\frac{3}{2}}\right]}$$
(7)

and

$$f_2 = 1 + \frac{\left(\frac{\omega_2}{\omega_{log}} - 1\right)\lambda^2}{\lambda^2 + \left[1.82(1 + 6.3\mu^*)\frac{\bar{\omega}_2}{\omega_{log}}\right]}$$
(8)

average frequencies $\bar{\omega}_2$ is given by

$$\bar{\omega}_2 = \sqrt{\frac{2}{\lambda}} \int_0^\infty \frac{d\omega}{\omega} \alpha^2 F(\omega) \omega d\omega$$
⁽⁹⁾

(2) Self-consistent solution of the Eliashberg equation

For strong-coupling system, it can be better described with Eliashberg equation³:

$$Z(i\omega_n)\Delta(i\omega_n) = \frac{\pi T}{N_F} \sum_{n} \frac{\Delta(i\omega_n)}{\sqrt{\omega_n^2 + \Delta^2(i\omega_n)}} \times [\lambda(\omega_n - \omega_n) - N_F \mu^*]\delta(\epsilon)$$

(10)

$$Z(i\omega_n) = 1 + \frac{\pi T}{N_F \omega_n} \sum_{n} \frac{\omega_n}{\sqrt{\omega_n^2 + \Delta^2(i\omega_n)}} \lambda(\omega_n - \omega_n) \delta(\epsilon)$$
(11)

where functions $Z(i\omega_n)$ and $\Delta(i\omega_n)$ are the renormalization function and pairing order parameter, respectively. N_F is the density of electronic states at the Fermi level, and $\delta(\epsilon)$ is the Dirac delta function. $i\omega_n = i(2n+1)\pi T_c$ are the fermion Matsubara frequencies. μ^* is the Coulomb pseudopotential, for which we use the widely accepted range of 0.1 - 0.13. $\lambda(\omega_n - \omega_n)$ contains the electron-phonon coupling matrix, phonon propagator, and the phonon density of states, and is given by:

$$\lambda(\omega_n - \omega_n) = \int_0^\infty d\omega \frac{2\omega}{(\omega_n - \omega_n)^2 + \omega^2} \alpha^2 F(\omega)$$
(12)

The equations for the $Z(i\omega_n)$ and $\Delta(i\omega_n)$ form a coupled nonlinear system and are solved selfconsistently. We evaluated renormalization function and the order parameter for each Matsubara frequency along the imaginary energy axis. After calculating $Z(i\omega_n)$ and $\Delta(i\omega_n)$, an analytic continuation is performed to the real axis using Pade' functions.

The specific process is as follows:

References

- 1. W. L. McMillan, Physical Review, 1968, 167, 331.
- 2. 3. P. B. Allen and R. C. Dynes, *Phys. Rev. B*, 1975, **12**, 905-922.
- G. M. Eliashberg, Sov Phys Jetp, 1960, 11:3, 696-702.