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Anisotropic effective masses

Let us consider a solid with a gap whose constant energy surfaces ε(k) are ellipsoids,
with effective masses m‖ and m⊥ for electrons and holes along the ellipsoid axis and in
the plane perpendicular to it, respectively. In such a system, the binding energy of an
exciton is given by
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where e is the electron charge, ε is the dielectric constant of the solid, ~ is the reduced
Planck’s constant and µ‖ and µ⊥ are the reduced masses parallel and perpendicular to
the ellipsoid axis, respectively. The function I(λ) is given by
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and λ is the solution of
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Full details about this formalism can be found in [1]. In our case, the effective masses
for the first excitons are summarized in Table S1 below.

According to this table, the binding energies for E ‖ Ox and E ‖ Oz are Eb = 0.02E0

and Eb = 0.16E0, where Eb = −3
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. These values indeed differ by a factor 8, as

the main text indicates.
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E ‖ Ox
m⊥,1 m⊥,2 m⊥ =

√
m⊥,1m⊥,2 m‖ µ⊥ µ‖ λ

Electrons 0.363 0.218 0.281 0.011
0.223 0.010 3.1417

Holes 4.611 0.257 1.089 0.136

E ‖ Oz
m⊥,1 m⊥,2 m⊥ =

√
m⊥,1m⊥,2 m‖ µ⊥ µ‖ λ

Electrons 0.609 3.718 1.505 1.134
0.576 0.378 1.162

Holes 0.261 3.342 0.933 0.567

Table S1. Estimation of the λ parameter appearing in Eq. (S1).
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