Supplement for "Polarization-dependent excitons and plasmon activity in nodal-line semimetal ZrSiS"

Juan J. Meléndez, Andrés Cantarero

Anisotropic effective masses

Let us consider a solid with a gap whose constant energy surfaces $\varepsilon(\mathbf{k})$ are ellipsoids, with effective masses m_{\parallel} and m_{\perp} for electrons and holes along the ellipsoid axis and in the plane perpendicular to it, respectively. In such a system, the binding energy of an exciton is given by

$$E(\lambda) = -\frac{3}{2} \left(\frac{e^2}{4\pi\varepsilon\hbar}\right)^2 \left(\frac{2}{\mu_{\perp}} + \frac{1}{\lambda^2\mu_{\parallel}}\right)^{-1} I(\lambda)^2, \tag{S1}$$

where e is the electron charge, ε is the dielectric constant of the solid, \hbar is the reduced Planck's constant and μ_{\parallel} and μ_{\perp} are the reduced masses parallel and perpendicular to the ellipsoid axis, respectively. The function $I(\lambda)$ is given by

$$I(\lambda) = \frac{1}{2} \int_0^{\pi} \frac{\sin\theta d\theta}{\sqrt{1 + (\lambda^2 - 1)\cos^2\theta}} = \begin{cases} \frac{\arcsin\sqrt{\lambda^2 - 1}}{\sqrt{\lambda^2 - 1}} & \text{for } \lambda > 1\\ \frac{\arcsin\sqrt{1 - \lambda^2}}{\sqrt{1 - \lambda^2}} & \text{for } \lambda < 1 \end{cases}$$
(S2)

and λ is the solution of

$$\frac{\mu_{\perp}}{\mu_{\parallel}} = 2\lambda^2 \frac{1 - \lambda I(\lambda)}{I(\lambda) - \lambda} \tag{S3}$$

Full details about this formalism can be found in [1]. In our case, the effective masses for the first excitons are summarized in Table S1 below.

According to this table, the binding energies for $\boldsymbol{E} \parallel Ox$ and $\boldsymbol{E} \parallel Oz$ are $E_b = 0.02E_0$ and $E_b = 0.16E_0$, where $E_b = -\frac{3}{2} \left(\frac{e^2}{4\pi\varepsilon\hbar}\right)^2$. These values indeed differ by a factor 8, as the main text indicates.

[1] A. Schindlmayr. Excitons with anisotropic effective mass. Eur. J. Phys., 18:374–376, 1997.

Preprint submitted to Physical Chemistry Chemical Physics

July 20, 2021

$E \parallel Ox$							
	$m_{\perp,1}$	$m_{\perp,2}$	$m_{\perp} = \sqrt{m_{\perp,1}m_{\perp,2}}$	m_\parallel	μ_{\perp}	μ_{\parallel}	λ
Electrons	0.363	0.218	0.281	0.011	0.223	0.010	2 1 / 17
Holes	4.611	0.257	1.089	0.136	0.223	0.010	0.1417
$\boxed{\qquad \qquad E \parallel Oz}$							
	$m_{\perp,1}$	$m_{\perp,2}$	$m_{\perp} = \sqrt{m_{\perp,1}m_{\perp,2}}$	m_{\parallel}	μ_{\perp}	μ_{\parallel}	λ
Electrons	0.609	3.718	1.505	1.134	0.576	0.378	1 169
Holes	0.261	3.342	0.933	0.567	0.370	0.370	1.102

Table S1. Estimation of the λ parameter appearing in Eq. (S1).