Supplementary Information:

High-performance photovoltaic device for the 2D all-inorganic

Ruddlesen-Popper perovskite heterostructure Cs₂PbI₂Cl₂/MAPbI₃

Ling-Yu Pan, Yu-Feng Ding, Huang-Qing Liu*, Meng-Qiu Cai*

Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education &

Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and

Devices, School of Physics and Electronics, Hunan University, Changsha 410082,

China

^{*}Corresponding author. E-mail address: liuhq@hnu.edu.cn(H. Q. Liu); mqcai@hnu.edu.cn(M. Q. Cai)

 2D Cs₂PbI₂Cl₂(Å)
 3D MAPbI₃(Å)
 2D/3D Her. (Å)

 a
 5.64
 8.80
 8.37

 b
 5.64
 8.80
 8.37

Table S1. The calculated lattice parameters of 2D $Cs_2PbI_2Cl_2$ monolayer, 3D MAPbI_3 slab, and2D/3D heterostructure. The a and b stand for the lattice direction.

 Table S2. Calculated band gaps of 2D monolayer/3D MAI terminated and 2D trilayer/3D MAI

 terminated heterostructures using the PBE method , respectively.

	E _g (eV)	
2D monolayer/3D MAI Her.	1.20	
2D trilayer/3D MAI Her.	1.19	

Table S3. The work function before and after compression of 2D Cs₂PbI₂Cl₂., 3D MAI-terminated

and 3D PbI-terminated.

	2D (eV)	3D-MAI (eV)	3D-PbI (eV)
Before compression	4.88	4.09	5.21
After compression	4.97	3.57	5.49

Fig. S1 The total energy of 2D/MAI and 2D/PbI heterostructures for various energy cutoffs.

Fig. S2 The different match between the 2D Cs₂PbI₂Cl₂. monolayer and (a) 3D MAI-teminated, (b) 3D PbI-terminated. The red dot present the supercell dimension with the minimum number of atoms and mean absolute strain.

Fig. S3 The periodic structure of 2D Cs₂PbI₂Cl₂.

Fig. S4 Calculated projected density of states (PDOS) of (a) 2D monolayer/3D MAI terminated and (b) 2D trilayer/3D MAI terminated heterostructures using the PBE method , where I-3D, I-2D, Pb-3D and Pb-2D represent I atom in 3D MAPbI₃, I atom in 2D Cs₂PbI₂Cl₂, Pb atom in 3D MAPbI₃ and Pb atom in 2D Cs₂PbI₂Cl₂, repectively.

FIG. S5 Variations of the energy against the time for AIMD simulations of (a) 2D/MAI and (b) 2D/PbI heterostructures. The simulation is run under 298.15 K and the time step is 1 fs.

Fig. S6 Calculated projected density of states (PDOS) of (a) 2D/MAI and (b) 2D/PbI heterostructures using the PBE method.

Fig. S7 The band bending diagrams of (a) 2D/MAI and (b) 2D/PbI heterostructures, respectively.