Supplementary Information for Are All Charge-Transfer Parameters Created Equally? A Study of Functional Dependence and Excited-State Charge-Transfer Quantification Across Two Dye Families

Richard Drew Marshburn,[†] Daniel C. Ashley,[†] Gregory M. Curtin,[†] Nadia Sultana,[‡] Chang Liu,[†] Nelson R. Vinueza,[‡] Elon A. Ison,[†] Elena Jakubikova^{*†}

[†]Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States

^{*}Department of Textile Engineering, Chemistry, and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC 27606, United States

Table of Contents

Azo ground state orbitals	Pg S3
Cyano ground state orbitals	Pg S10
Calculated and experimental spectra: Azo dyes	Pg S17
Calculated and experimental spectra: Cyano dyes	Pg S22
HOMO-LUMO gap vs. calculated energies	Pg S27
Azo excitation data: High oscillator strength selection paradigm	Pg S29
Cyano excitation data: High oscillator strength selection paradigm	Pg S30
Azo excitation images: High oscillator strength selection paradigm	Pg S31
Cyano excitation images: High oscillator strength selection paradigm	Pg S45
MUE/MSE for alternate excitation assignments: Low energy selection paradigm	Pg S59
Azo excitation data: Low energy selection paradigm	Pg S60
Cyano excitation data: Low energy selection paradigm	Pg S61
Comments on alternate tautomer of A1	Pg S62
Dependence of ΔE_{max} on CT parameters	Pg S64
LASSO analysis	Pg S72
State specific solvation root flipping	Pg S76
NMR characterization details	Pg S77
Liquid chromatography-mass spectrometry (LC-MS)	Pg S80

Note for all figures: All data for B3LYP is referred to as "B3LYP+D2", which is the method used for the geometry optimization. The D2 does not affect calculated orbitals or TDDFT results beyond the indirect manner in which it influenced the original optimization.

Azo Ground State Orbitals

All ground state orbital images were obtained at the B3LYP+D2/6-311G* level of theory in solvent (acetonitrile, PCM) and rendered with an isovalue of 0.03 ($e/Å^3$).

Table S1. Frontier orbitals for dye A1.

Table S2. Frontier orbitals for dye A2.

Table S3. Frontier orbitals for dye A3.

Table S4. Frontier orbitals for dye A4.

Table S5. Frontier orbitals for dye A5.

Table S6. Frontier orbitals for dye A6.

Table S7. Frontier orbitals for dye A7.

Table S8. Frontier orbitals for dye A8.

Table S10. Frontier orbitals for dye A10.

Table S9. Frontier orbitals for dye A9.

Cyano Ground State Orbitals

All ground state orbital images were obtained at the B3LYP+D2/6-311G* level of theory in solvent (acetonitrile, PCM) and rendered with an isovalue of 0.03 ($e/Å^3$).

Table S11. Frontier orbitals for dye C1.

Table S12. Frontier orbitals for dye C2.

Table S13. Frontier orbitals for dye C3.

Table S14. Frontier orbitals for dye C4.

Table S15. Frontier orbitals for dye C5.

Table S16. Frontier orbitals for dye C6.

Table S17. Frontier orbitals for dye C7.

Table S18. Frontier orbitals for dye C8.

номо	LUMO
номо-1	LUMO+1

Table S19. Frontier orbitals for dye C9.

Table S20. Frontier orbitals for dye C10.

Calculated and experimental spectra: Azo dyes

Figure S1. Experimentally measured and calculated TD-DFT spectra of dye A1.

Figure S2. Experimentally measured and calculated TD-DFT spectra of dye A2.

Figure S3. Experimentally measured and calculated TD-DFT spectra of dye A3.

Figure S4. Experimentally measured and calculated TD-DFT spectra of dye A4.

Figure S5. Experimentally measured and calculated TD-DFT spectra of dye A5.

Figure S6. Experimentally measured and calculated TD-DFT spectra of dye A6.

Figure S7. Experimentally measured and calculated TD-DFT spectra of dye A7.

Figure S8. Experimentally measured and calculated TD-DFT spectra of dye A8.

Figure S9. Experimentally measured and calculated TD-DFT spectra of dye A9.

Figure S10. Experimentally measured and calculated TD-DFT spectra of dye A10.

Calculated and experimental spectra: Cyano dyes

Figure S11. Experimentally measured and calculated TD-DFT spectra of dye C1.

Figure S12. Experimentally measured and calculated TD-DFT spectra of dye C2.

Figure S13. Experimentally measured and calculated TD-DFT spectra of dye C3.

Figure S14. Experimentally measured and calculated TD-DFT spectra of dye C4.

Figure S15. Experimentally measured and calculated TD-DFT spectra of dye C5.

Figure S16. Experimentally measured and calculated TD-DFT spectra of dye C6.

Figure S17. Experimentally measured and calculated TD-DFT spectra of dye C7.

Figure S18. Experimentally measured and calculated TD-DFT spectra of dye C8.

Figure S19. Experimentally measured and calculated TD-DFT spectra of dye C9.

Figure S20. Experimentally measured and calculated TD-DFT spectra of dye C10.

HOMO-LUMO gap vs. calculated energies

Note that all plots below were made only for the high oscillator strength selection paradigm.

Figure S21: Relationship between HOMO-LUMO gap and calculated E_{max} for PBE0, M06, and BHandHLYP.

Figure S22: Relationship between HOMO-LUMO gap and calculated E_{max} for BP86, B3LYP+D2, and CAM-B3LYP.

r				88		p	8				1	
Marchen	Lihmme Cada	Experimental	E	H-L Gap	Calculated	Osc.	Transition		Δr	DCT	G	Δμ
Number	Library Code	$\hat{E}_{max}(eV)$	Functional	(eV)	E _{max} (eV)	Strength	Number	Λ	(Å)	(Å)	SC	(D)
A 1	V 12516 124	2.19	D2I VD+D2	2 8 2 7	2.62	0.06	2	0.570	4.005	5.072	0.751	15.92
AI	A-12510-154	5.16	M06	2.037	2.03	0.90	2	0.575	4.993	1 502	0.751	13.65
			CAM-B3LVP	5.170	3.15	1.05	2	0.573	4.924	3 806	0.784	10.71
			BP86	1 666	2.17	0.62	2	0.505	4.567	5.000	0.716	16.96
			DI 60	3 168	2.17	1.05	2	0.582	4.870	1 034	0.750	14.83
			BHandHI VP	4 760	2.70	1.05	2	0.582	4.870	3 701	0.739	11.05
Δ2	X-12683-21C	2.65	B3LVP+D2	2 979	2.81	0.87	2	0.665	1.617	1 844	0.029	4 10
A4	A-12003-21C	2.05	M06	3 390	2.81	1.04	2	0.680	1.886	1.869	0.931	4.10
			CAM-B3LYP	5 249	3.06	1.04	2	0.653	2 241	1.009	0.923	4.95
			BP86	1.821	2 53	0.89	2	0.671	1.680	2 851	0.889	5.49
			PBE0	3 283	2.35	0.05	2	0.667	1.000	1 983	0.0029	4 4 5
			BHandHLYP	4 886	3.17	0.89	2	0.680	1.700	1.500	0.948	4.11
A3	X-12683-22A	2.84	B3LYP+D2	3 161	2.95	1.07	2	0.654	2,235	2.992	0.873	7 44
			M06	3.584	3.00	1.15	2	0.660	2.174	2.622	0.893	6.81
			CAM-B3LYP	5.509	3.29	1.21	2	0.640	2.676	2.629	0.889	7.49
			BP86	1.900	2.62	0.98	2	0.674	1.171	3.483	0.841	7.27
			PBE0	3.480	3.03	1.13	2	0.653	2.352	2,999	0.871	7.66
			BHandHLYP	5.155	3.38	1.22	2	0.651	2.600	2.492	0.900	7.36
A4	X-12683-22B	2.62	B3LYP+D2	2.949	2.82	0.80	2	0.666	1.847	1.548	0.950	3.53
			M06	3.356	2.83	1.04	2	0.677	1.769	1.700	0.944	3.85
			CAM-B3LYP	5.211	3.06	0.98	2	0.641	2.249	1.750	0.934	4.47
			BP86	1.797	2.53	0.98	2	0.674	1.401	2.386	0.926	4.18
			PBE0	3.250	2.88	0.89	2	0.665	1.654	1.715	0.942	3.90
			BHandHLYP	4.851	3.18	0.84	2	0.652	1.717	1.301	0.955	3.55
A5	X-12683-22C	2.65	B3LYP+D2	2.952	2.81	0.85	2	0.667	1.788	1.655	0.942	3.86
			M06	3.361	2.82	1.12	2	0.679	1.781	1.798	0.932	4.15
			CAM-B3LYP	5.218	3.06	1.06	2	0.632	2.513	1.829	0.924	4.73
			BP86	1.797	2.51	1.03	2	0.675	1.435	2.711	0.893	5.03
			PBE0	3.256	2.87	0.96	2	0.670	1.921	1.831	0.931	4.24
			BHandHLYP	4.860	3.17	0.92	2	0.660	1.625	1.394	0.948	3.83
A6	X-12683-23A	2.81	B3LYP+D2	3.198	3.00	0.98	2	0.650	2.362	3.049	0.875	7.89
			M06	3.626	3.06	1.09	2	0.652	2.336	2.762	0.891	7.51
			CAM-B3LYP	5.557	3.38	1.18	2	0.631	2.821	2.769	0.886	8.19
			BP86	1.947	2.64	0.89	2	0.672	1.197	3.435	0.858	7.40
			PBE0	3.514	3.08	1.06	2	0.646	2.491	3.102	0.870	8.25
	V 12(02 22C	2.((BHandHLYP	5.205	3.47	1.20	2	0.041	2.720	2.030	0.895	8.10
A/	A-12085-25C	2.00	M06	2.935	2.80	0.87	2	0.009	1.397	1.004	0.945	3.74
			CAM D2LVD	5.303	2.02	1.14	2	0.674	1./4/	1.729	0.937	4.02
			CAM-D3L1P	5.221	3.00	1.09	2	0.624	2.323	1.850	0.928	4./4
			BP80 DDE0	1.796	2.50	1.05	2	0.080	1.001	2.482	0.906	4.01
			PDEU DHandHI VD	3.230	2.80	0.99	2	0.672	1.951	1.792	0.955	4.10
4.8	X 12683 24A	2.86		4.802	2.82	0.95	2	0.653	2.038	3 107	0.950	7.66
Ao	A-12003-24A	2.80	M06	3 4 5 3	2.82	1.20	2	0.653	2.938	2 832	0.805	7.00
			CAM-B3L VP	5 349	3.17	1.27	2	0.633	3.085	2.852	0.879	8.16
			BP86	1.857	2.52	1.13	2	0.655	2.782	3 285	0.865	6 39
			PBE0	3.346	2.90	1.30	2	0.650	2.982	3.213	0.862	7.99
			BHandHLYP	4.986	3.24	1.41	2	0.647	2.918	2.730	0.889	8.01
A9	X-12683-25	2.68	B3LYP+D2	2.706	2.51	1.03	2	0.558	5.498	5.246	0.779	17.44
			M06	3.128	2.64	1.15	2	0.556	5.366	4.777	0.802	15.56
			CAM-B3LYP	5.017	3.06	1.37	2	0.542	5.320	4.037	0.831	12.25
			BP86	1.583	2.04	0.68	2	0.591	5.443	5.553	0.757	17.41
			PBE0	3.026	2.64	1.14	2	0.559	5.389	5.138	0.782	16.58
			BHandHLYP	4.614	3.09	1.40	2	0.552	5.175	4.016	0.838	12.84
A10	X-12683-33A	2.63	B3LYP+D2	2.653	2.46	1.01	2	0.553	5.446	5.174	0.792	16.98
			M06	3.068	2.59	1.15	2	0.554	5.411	4.756	0.813	15.60
			CAM-B3LYP	4.951	3.01	1.38	2	0.537	5.390	4.028	0.837	12.33
			BP86	1.543	2.00	0.69	2	0.593	5.451	5.539	0.769	17.02
			PBE0	2.972	2.59	1.14	2	0.558	5.412	5.107	0.794	16.49
	1		BHandHLYP	4.550	3.04	1.41	2	0.548	5.248	3.999	0.845	12.92

Azo excitation data: High oscillator strength selection paradigm

 Table S21. Measured and calculated values of azo dyes using the high oscillator paradigm.

Number	Library Code	Experimental	Functional	H-L Gap	Calculated	Osc. Strength	Transition	Λ	Δr	D _{CT}	Sc	Δμ
		E _{max} (eV)		(eV)	E _{max} (eV)		Number		(Å)	(Å)		(D)
C1	X-12833-43-1	2.05	B3LYP+D2	2.030	1.82	0.42	1	0.607	4.084	3.719	0.721	10.16
			M06	2.429	1.93	0.43	1	0.578	4.226	3.804	0.716	11.64
			CAM-B3LYP	4.196	2.33	0.57	1	0.530	4.386	3.924	0.707	13.42
			BP86	1.017	1.52	0.31	1	0.658	3.585	2.829	0.804	6.53
			PBE0	2.305	1.91	0.45	1	0.595	4.141	3.838	0.710	10.96
			BHandHLYP	3.805	2.39	0.60	1	0.536	4.377	3.844	0.716	13.63
C2	X-12833-45-2	2.44	B3LYP+D2	2.371	2.19	0.63	1	0.587	4.088	4.227	0.699	12.62
			M06	2.778	2.31	0.69	1	0.561	4.206	4.041	0.718	12.90
			CAM-B3LYP	4.555	2.68	0.91	1	0.530	4.257	3.624	0.752	11.67
			BP86	1.330	1.75	0.27	1	0.534	4.590	4.360	0.643	16.19
			PBE0	2.654	2.29	0.70	1	0.577	4.124	4.191	0.702	12.60
			BHandHLYP	4.149	2.72	0.92	1	0.536	4.237	3.598	0.757	12.16
C3	X-12833-83-1	3.20	B3LYP+D2	3.562	3.34	0.32	2	0.546	3.274	2.677	0.762	7.36
			M06	4.055	3.44	0.34	2	0.535	3.128	2.607	0.769	7.85
			CAM-B3LYP	6.018	3.85	0.44	2	0.516	3.359	2.658	0.766	9.00
			BP86	2.228	2.94	0.23	2	0.615	2.897	2.286	0.822	4.60
			PBE0	3.884	3.47	0.35	2	0.532	3.342	2.766	0.750	8.12
			BHandHLYP	5.672	3.96	0.47	2	0.531	3.181	2.554	0.780	9.14
C4	X-12833-88-1	3.36	B3LYP+D2	3.523	3.38	0.26	2	0.464	3.936	3.280	0.714	12.21
			M06	4.025	3.54	0.28	2	0.469	3.832	3.055	0.737	11.44
			CAM-B3LYP	6.051	4.11	0.21	2	0.489	2.657	1.605	0.882	5.25
			BP86	2.057	2.56	0.09	2	0.401	4.720	4.19	0.675	18.62
			PBE0	3.847	3.56	0.28	2	0.464	3.960	3.234	0.719	12.10
			BHandHLYP	5.768	4.26	0.35	2	0.495	3.387	2.617	0.793	9.75
C5	X-12833-89-1	3.37	B3LYP+D2	3.552	3.34	0.25	2	0.467	3.885	3.304	0.706	12.28
			M06	4.057	3.51	0.28	2	0.472	3.722	3.069	0.731	11.55
			CAM-B3LYP	6.086	4.08	0.34	2	0.476	3.389	2.588	0.790	9.19
			BP86	2.090	2.56	0.11	2	0.409	4.704	4.221	0.639	17.65
			PBE0	3.876	3.52	0.28	2	0.467	3.909	3.242	0.711	12.16
			BHandHLYP	5.799	4.22	0.38	2	0.492	3.484	2.649	0.783	10.07
C6	X-13641-126	2.95	B3LYP+D2	3.289	3.07	0.89	1	0.653	2.201	2.512	0.857	5.84
			M06	3.739	3.13	0.90	1	0.648	2.144	2.264	0.873	5.63
			CAM-B3LYP	5.607	3.32	0.97	1	0.637	2.184	2.315	0.864	6.07
			BP86	2.078	2.74	0.61	1	0.649	2.327	3.010	0.826	6.96
			PBE0	3.599	3.14	0.92	1	0.651	2.206	2.509	0.855	5.94
6 7	X 12(41.07	2.07	BHandHLYP	5.261	3.44	1.00	1	0.646	2.035	2.115	0.882	5.76
C/	X-13641-8/	2.87	B3LYP+D2	3.204	3.02	0.85	1	0.656	2.110	2.389	0.848	5.22
			M06	3.650	3.08	0.85	1	0.650	2.069	2.157	0.864	5.11
			CAM-B3LYP	5.495	3.26	0.92	1	0.637	2.104	2.214	0.854	5.56
			BP80 DDE0	2.013	2./1	0.58	1	0.654	2.200	2.575	0.825	5.72
		-	F DEU DHandHI VD	5.152	3.08	0.06	1	0.034	2.121	2.392	0.840	5.34
<u>C</u> 8	V 12600 140	2 70		3.132	3.37	0.90	1	0.640	2.081	2.039	0.873	2.58
Co	A-13099-140	2.19	M06	3.310	3.03	0.70	1	0.004	2.961	2.034	0.852	0.01
			CAM B3I VP	5 702	3.12	0.72	1	0.001	2.911	2.834	0.805	8.04
			RD86	2.056	2.65	0.83	1	0.588	2.937	2.045	0.800	7.43
			DI 80	2.030	2.03	0.73	1	0.602	2.083	3.051	0.851	9.93
			BHandHI VP	5 360	3.52	0.85	1	0.602	2.767	2 685	0.877	8.63
C9	X-13699-147	2.86	B3LVP+D2	3 290	3.10	0.03	1	0.654	2.702	2.005	0.864	6.75
	21-15077=147	2.00	M06	3 730	3.17	0.91	1	0.650	2.372	2.780	0.879	6.62
			CAM-B3LYP	5.611	3 39	1.04	1	0.638	2.310	2.631	0.877	7.19
		1	BP86	2.071	2.79	0.75	1	0.666	2.406	2.862	0.854	5.98
		1	PBE0	3.595	3.17	0.95	1	0.652	2.403	2.809	0.863	6.94
		1	BHandHLYP	5 265	3 49	1.07	1	0.646	2.203	2.409	0.893	6.81
C10	X-9745-103A	2.87	B3LYP+D2	3 314	3 1 5	0.98	1	0.666	1 998	2.411	0.830	5 14
		,	M06	3 757	3 20	0.97	1	0.661	1 946	2 1 7 9	0.851	5.04
		1	CAM-B3LYP	5.613	3.38	1.05	1	0.649	2.014	2.332	0.834	5.77
		1	BP86	2.117	2.89	0.87	1	0.679	1.985	2.489	0.827	4.46
		1	PBE0	3.621	3.21	1.01	1	0.664	2.007	2.439	0.826	5.33
			BHandHLYP	5.265	3.48	1.08	1	0.658	1.853	2.094	0.859	5.41

Cyano excitation data: High oscillator strength selection paradigm

Table S22. Measured and calculated values of cyano dyes using the high oscillator paradigm.

Azo excitation images: High oscillator strength selection paradigm

The following tables show the orbital pairs that contribute to each λ_{max} excitation for the azo dyes. In this section, λ_{max} excitations were selected based on the highest oscillator strength paradigm when there was potential conflict. Images of the orbital pairs with the highest contribution values are provided. All orbital images in the SI were rendered with an isovalue of 0.03 (e/Å³). The percent contribution of each excitation is indicated.

Table S23. Dominant orbitals involved in excited state corresponding to λ_{max} for A1. High oscillator strength paradigm.

НОМО		LUMO	0.995				
ڮڲ؇۞	÷						
BHandHLYP							
НОМО	\rightarrow	LUMO+1	0.054				
НОМО		LUMO	0.903				
ૢૡૢ૽ૢૢૢૢ૾ૢ૾ૢૡૡ૽ૢ૽ૺ૾ૣૺ ૡ	÷						

Table S24. Dominant orbitals involved in excited state corresponding to λ_{max} for A2. High oscillator strength paradigm.

	А	2				
B3LYP+D2						
HOMO-5	\rightarrow	LUMO	0.020			
HOMO-2	\rightarrow	LUMO	0.262			
НОМО		LUMO	0.695			
	→					
HOMO-2	\rightarrow	LUMO	0.115			
НОМО		LUMO	0.838			
	→					
CAM-B3LYP						
HOMO-5	\rightarrow	LUMO	0.023			
HOMO-3	\rightarrow	LUMO	0.062			
HOMO-6	\rightarrow	LUMO	0.084			
НОМО	\rightarrow	LUMO	0.761			

	BP86							
НОМО	÷	LUMO	0.020					
НОМО-2	\rightarrow	LUMO	0.042					
HOMO-1	\rightarrow	LUMO	0.166					
НОМО		LUMO	0.767					
	÷							
	PB	E0						
HOMO-5	\rightarrow	LUMO	0.026					
НОМО-2	\rightarrow	LUMO	0.214					
НОМО		LUMO	0.745					
and the second s	÷							
	BHand	HLYP						
HOMO-8	\rightarrow	LUMO	0.136					
HOMO-7	\rightarrow	LUMO	0.148					
НОМО		LUMO	0.647					
	÷							

Table S25. Dominant orbitals involved in excited state corresponding to λ_{max} for A3. High oscillator strength paradigm.

A3							
B3LYP+D2							
HOMO-1	\rightarrow	LUMO	0.165				
НОМО	\rightarrow	LUMO	0.815				

M06							
HOMO-1	\rightarrow	LUMO	0.124				
НОМО		LUMO	0.843				
-0100	→						
	CAM-	B3LYP					
HOMO-1	\rightarrow	LUMO	0.050				
НОМО		LUMO	0.848				
٠ ٩ ٢٥	÷						
	BI	286					
НОМО	\rightarrow	LUMO	0.350				
HOMO-I	÷		0.622				
	PE	BE0					
HOMO-1	\rightarrow	LUMO	0.132				
НОМО		LUMO	0.842				
	÷						
BHandHLYP							
HOMO-8	\rightarrow	LUMO	0.035				
HOMO-7	\rightarrow	LUMO	0.043				
НОМО	\rightarrow	LUMO	0.841				

Table S26. Dominant orbitals involved in excited state corresponding to λ_{max} for A4. High oscillator strength paradigm.

		A4	
	B3L	YP+D2	
HOMO-1	\rightarrow	LUMO	0.185
НОМО-2	\rightarrow	LUMO	0.200
НОМО		LUMO	0.586
	→		
	Ν	406	
HOMO-2	\rightarrow	LUMO	0.053
HOMO-1	\rightarrow	LUMO	0.144
НОМО		LUMO	0.770
	→		
	CAM	-B3LYP	
HOMO-4	\rightarrow	LUMO	0.020
HOMO-3	\rightarrow	LUMO	0.047
HOMO-5	\rightarrow	LUMO	0.082
HOMO-2	\rightarrow	LUMO	0.121
НОМО	\rightarrow	LUMO	0.688
	В	P86	
НОМО	\leftarrow	LUMO	0.022
HOMO-1	\rightarrow	LUMO	0.236

НОМО		LUMO	0.746
ૡ૱	÷		
	PB	BE0	
HOMO-1	\rightarrow	LUMO	0.039
HOMO-2	\rightarrow	LUMO	0.277
HOMO		LUMO	0.647
	÷		
	BHanc	IHLYP	
HOMO-3	\rightarrow	LUMO	0.028
HOMO-4	\rightarrow	LUMO	0.050
HOMO-6	\rightarrow	LUMO	0.311
НОМО		LUMO	0.559
	÷		

Table S27. Dominant orbitals involved in excited state corresponding to λ_{max} for A5. High oscillator strength paradigm.

A5						
	B3LY	P+D2				
HOMO-2	\rightarrow	LUMO	0.131			
HOMO-1	\rightarrow	LUMO	0.253			
НОМО		LUMO	0.585			
-32000	→					
M06						
HOMO-2	\rightarrow	LUMO	0.043			
HOMO-1	\rightarrow	LUMO	0.147			
НОМО		LUMO	0.774			
-----------	---------------	-------	-------	--		
	÷					
	CAM-	B3LYP				
HOMO-4	\rightarrow	LUMO	0.022			
HOMO-7	\rightarrow	LUMO	0.069			
НОМО-2	\rightarrow	LUMO	0.079			
НОМО-3	\rightarrow	LUMO	0.080			
НОМО		LUMO	0.699			
- A A	→					
	BF	286				
НОМО	÷	LUMO	0.020			
HOMO-1	\rightarrow	LUMO	0.237			
НОМО		LUMO	0.735			
	÷					
	PE	EO				
HOMO-1	\rightarrow	LUMO	0.094			
HOMO-2	\rightarrow	LUMO	0.210			
НОМО		LUMO	0.654			
- Jo Det	<i>></i>					
BHandHLYP						
HOMO-6	\rightarrow	LUMO	0.067			
HOMO-8	\rightarrow	LUMO	0.292			
НОМО	\rightarrow	LUMO	0.576			

Table S28. Dominant orbitals involved in excited state corresponding to λ_{max} for A6. High oscillator strength paradigm.

A6			
	B3LY	P+D2	
HOMO-1	\rightarrow	LUMO	0.189
НОМО		LUMO	0.779
	\rightarrow		
	М	06	
HOMO-3	\rightarrow	LUMO	0.023
HOMO-1	\rightarrow	LUMO	0.131
НОМО		LUMO	0.825
⊷ୡୢଽଡ଼ୖଡ଼ୖୢୖଢ଼ୄ	÷		
	CAM-	B3LYP	
HOMO-4	\rightarrow	LUMO	0.044
HOMO-1	\rightarrow	LUMO	0.051
HOMO		LUMO	0.837
-ઙૢૢૢૢૢૢૼૼૼૼૼૼૼ۞૾ૢૺૼૼ	÷		
	BF	86	
НОМО	\rightarrow	LUMO	0.478
HOMO-1		LUMO	0.489
	÷		
	PB	E0	
НОМО-3	\rightarrow	LUMO	0.021

HOMO-1	\rightarrow	LUMO	0.147
НОМО		LUMO	0.816
-350 DE	÷		
	BHand	HLYP	
HOMO-1	\rightarrow	LUMO	0.027
HOMO-6	\rightarrow	LUMO	0.068
НОМО	\rightarrow	LUMO	0.826
-ૢૢૢૢૢૺ <i>ઌ</i> ૣૢૢૺૺૡ૾ૢૼ			

Table S29. Dominant orbitals involved in excited state corresponding to λ_{max} for A7. High oscillator strength paradigm.

A7					
	B3LYP+D2				
НОМО-2	\rightarrow	LUMO	0.089		
HOMO-1	\rightarrow	LUMO	0.286		
НОМО		LUMO	0.584		
- Jo Jo	÷				
	M06				
HOMO-2	\rightarrow	LUMO	0.036		
HOMO-1	\rightarrow	LUMO	0.153		
НОМО		LUMO	0.770		
- to the to	→				
CAM-B3LYP					
HOMO-4	\rightarrow	LUMO	0.022		
HOMO-5	\rightarrow	LUMO	0.024		
HOMO-7	\rightarrow	LUMO	0.053		
НОМО-3	\rightarrow	LUMO	0.058		

НОМО-2	\rightarrow	LUMO	0.093
НОМО		LUMO	0.702
	÷		
	BP	286	
HOMO-1	\rightarrow	LUMO	0.249
НОМО		LUMO	0.722
- Jose -	÷		
	PB	E0	
HOMO-1	\rightarrow	LUMO	0.142
HOMO-2	\rightarrow	LUMO	0.155
НОМО		LUMO	0.653
	÷		
	BHand	HLYP	
HOMO-4	\rightarrow	LUMO	0.021
HOMO-8	\rightarrow	LUMO	0.276
НОМО		LUMO	0.584
	÷		

Table S30. Dominant orbitals involved in excited state corresponding to λ_{max} for **A8**. High oscillator strength paradigm.

A8			
B3LYP+D2			
НОМО	\rightarrow	LUMO	0.997

A9				
	B3	3LYP+D2		
НОМО		LUMO	1.001	
`````````````````````````````````````	<i>→</i>			
		M06		
НОМО		LUMO	0.990	
`````````````````````````````````````	>			
	CA	M-B3LYP		
HOMO-3	\rightarrow	LUMO	0.030	
НОМО	\rightarrow	LUMO+1	0.076	
НОМО		LUMO	0.869	
ᢣᢩᡷᢛᠿᢩ	>			
		BP86		
НОМО	\rightarrow	LUMO+1	0.088	
НОМО		LUMO	0.909	
`````````````````````````````````````	→			
		PBE0		
НОМО	\rightarrow	LUMO	0.998	

Table S31. Dominant orbitals involved in excited state corresponding to λ_{max} for A9. High oscillator strength paradigm.

ڮٷڮ ؈۞۞ؚ			
	BH	andHLYP	
HOMO-3	\rightarrow	LUMO	0.028
НОМО	\rightarrow	LUMO+1	0.057
НОМО		LUMO	0.899
<u>کې د کې د</u>	→		

Table S32. Dominant orbitals involved in excited state corresponding to λ_{max} for A10. High oscillator strength paradigm.

		A10			
	B3LYP+D2				
HOMO-1	\rightarrow	LUMO	0.026		
НОМО		LUMO	0.972		
ૢૢૢૢૢૢૢૢૢૢૢૢૢૡ	→				
		M06			
НОМО		LUMO	0.990		
ڮٷڮٛڡ۞ڴؚ	→				
CAM-B3LYP					
HOMO-4	\rightarrow	LUMO	0.021		
НОМО	\rightarrow	LUMO+1	0.076		
НОМО	\rightarrow	LUMO	0.868		

≻ې\$ە¢¢			
		BP86	
НОМО	\rightarrow	LUMO+1	0.086
НОМО		LUMO	0.909
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷		
		PBE0	
НОМО		LUMO	0.996
૾ૺૢ૾ૺૼૼૼૼૼ૾૾ૢૻૼ૾૾ૢૼૼ	÷		
	BH	andHLYP	
HOMO-5	$\rightarrow$	LUMO	0.022
НОМО	$\rightarrow$	LUMO+1	0.057
НОМО		LUMO	0.897
<u>کې</u> ه کې	÷		

### Cyano excitation images: High oscillator strength selection paradigm

The following tables show the orbital pairs that contribute to each  $\lambda_{max}$  excitation for the cyano dyes. In this section,  $\lambda_{max}$  excitations were selected based on the highest oscillator strength paradigm when there was potential conflict. Images of the orbital pairs with the highest contribution values are provided. All orbital images in the SI were rendered with an isovalue of 0.03 (e/Å³). The percent contribution of each excitation is indicated.

**Table S33.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C1. High oscillator strength paradigm.





**Table S34.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for **C2**. High oscillator strength paradigm.





	(	<u>C3</u>	
	B3LY	YP+D2	
НОМО	$\rightarrow$	LUMO	0.026
НОМО		LUMO+1	0.950
	<b>→</b>		
	Μ	106	
НОМО	$\rightarrow$	LUMO	0.129
НОМО		LUMO+1	0.836
	÷		
	CAM-	B3LYP	
НОМО		LUMO+1	0.907
	÷		
	BI	286	
НОМО	$\rightarrow$	LUMO	0.036
НОМО		LUMO+1	0.926
	÷		
	PE	BEO	
НОМО	$\rightarrow$	LUMO	0.034

**Table S35.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C3. High oscillator strength paradigm.



**Table S36.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C4. High oscillator strength paradigm.

C4					
B3LYP+D2					
НОМО	$\rightarrow$	LUMO	0.035		
НОМО		LUMO+1	0.948		
	$\rightarrow$				
	M06				
НОМО	$\rightarrow$	LUMO	0.031		
НОМО		LUMO+1	0.941		
	÷				
CAM-B3LYP					
HOMO-4	$\rightarrow$	LUMO+4	0.024		
HOMO-4	$\rightarrow$	LUMO+1	0.345		
НОМО	$\rightarrow$	LUMO+1	0.551		

	BP	86	
НОМО	$\rightarrow$	LUMO	0.041
HOMO-1	$\rightarrow$	LUMO	0.105
HOMO-1	$\rightarrow$	LUMO+1	0.142
НОМО		LUMO+1	0.700
	÷		
	PB	E0	
НОМО	÷	LUMO+1	0.960
	BHand	HLYP	
HOMO-7	$\rightarrow$	LUMO+1	0.026
НОМО		LUMO+1	0.897
	÷		

		C5					
B3LYP+D2							
НОМО	$\rightarrow$	LUMO	0.059				
НОМО		LUMO+1	0.923				
	÷						
	Ν	106					
НОМО	$\rightarrow$	LUMO	0.066				
НОМО		LUMO+1	0.907				
	÷						
	CAM	-B3LYP					
HOMO-7	$\rightarrow$	LUMO+1	0.087				
НОМО		LUMO+1	0.817				
	÷						
	В	P86	I				
НОМО-2	$\rightarrow$	LUMO	0.039				
HOMO-1	$\rightarrow$	LUMO+1	0.042				
НОМО	$\rightarrow$	LUMO	0.085				
НОМО-2	$\rightarrow$	LUMO+1	0.098				
НОМО		LUMO+1	0.722				
	÷						

**Table S37.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for **C5**. High oscillator strength paradigm.



**Table S38.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C6. High oscillator strength paradigm.





**Table S39.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C7. High oscillator strength paradigm.

C7					
B3LYP+D2					
НОМО	$\rightarrow$	LUMO	0.997		



BHandHLYP						
НОМО		LUMO	0.961			
	÷					

**Table S40.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for **C8**. High oscillator strength paradigm.





**Table S41.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for **C9**. High oscillator strength paradigm.



PBE0							
НОМО	$\rightarrow$	LUMO	0.995				
	BHand	HLYP					
НОМО		LUMO	0.972				
•~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	÷						

**Table S42.** Dominant orbitals involved in excited state corresponding to  $\lambda_{max}$  for C10. High oscillator strength paradigm.

	C	10						
B3LYP+D2								
НОМО		LUMO						
	÷		1.000					
	Μ	06						
НОМО		LUMO	0.993					
	÷							
	CAM-H	33LYP						
НОМО		LUMO	0.968					
	÷							
	BP	86						
НОМО	÷	LUMO	0.024					
НОМО	$\rightarrow$	LUMO	0.989					

	PB	EO	
НОМО		LUMO	0.998
	$\rightarrow$		
	BHand	HLYP	
НОМО		LUMO	0.973
	÷		

MUE/MSE (eV)	BP86	B3LYP+D2	PBE0	M06	BHandHLYP	CAM-B3LYP
Cyano	0.47/-0.46	0.26/-0.06	0.25/0.03	0.23/0.05	0.45/0.45	0.33/0.33
Azo	0.52/-0.52	0.16/-0.16	0.11/-0.09	0.17/-0.17	0.25/0.25	0.18/0.15

MUE/MSE for alternate excitation assignments: Low energy selection paradigm

**Table S43.** MUEs and MSEs for calculation of  $\lambda_{max}$  for each dye family as determined with different functionals. All values are reported in eV. Unlike the similar table that appears in the paper, these  $\lambda_{max}$  values were selected because they were the lowest energy transitions reported.

### **Azo Dye Family**

### **Cyano Dye Family**





Figure S23. Dyes for which both selection paradigms did not agree.

# Azo excitation data: Low energy selection paradigm

Note: Different excitation data is provided only for the dyes for which the selection has changed (A2-A7).

Number	Library Code	Experimental Emax (eV)	Functional	Calculated Emax (eV)	Osc. Strength	Transition Number	Λ	$\Delta r$	D _{CT}	Sc
A2	X-12683-21C	2.65	B3LYP+D2	2.62	0.30	1	0.623	1.032	0.077	0.924
112	112005 210	2.05	M06	2.53	0.12	1	0.608	1 3 3 4	0.292	0.905
			CAM-B3LYP	2.80	0.19	1	0.597	1.901	0.182	0.914
			BP86	2.29	0.09	1	0.601	0.685	0.081	0.882
			PBE0	2.66	0.24	1	0.620	0.961	0.149	0.912
			BHandHLYP	2.94	0.35	1	0.658	1.373	0.056	0.951
A3	X-12683-22A	2.84	B3LYP+D2	2.53	0.13	1	0.623	0.714	0.373	0.912
			M06	2.43	0.08	1	0.626	0.573	0.456	0.915
			CAM-B3LYP	2.71	0.08	1	0.644	0.872	0.431	0.910
			BP86	2.19	0.08	1	0.692	1.107	0.260	0.899
			PBE0	2.56	0.11	1	0.624	0.664	0.414	0.907
			BHandHLYP	2.86	0.10	1	0.574	2.698	0.461	0.921
A4	X-12683-22B	2.62	B3LYP+D2	2.62	0.44	1	0.656	1.688	0.153	0.950
			M06	2.53	0.20	1	0.643	0.794	0.211	0.922
			CAM-B3LYP	2.80	0.29	1	0.610	1.866	0.062	0.929
			BP86	2.30	0.15	1	0.612	0.713	0.058	0.894
			PBE0	2.66	0.37	1	0.639	1.313	0.062	0.935
			BHandHLYP	2.93	0.49	1	0.633	1.754	0.156	0.966
A5	X-12683-22C	2.65	B3LYP+D2	2.61	0.47	1	0.659	1.527	0.160	0.949
			M06	2.53	0.21	1	0.644	0.715	0.232	0.907
			CAM-B3LYP	2.79	0.29	1	0.572	2.716	0.087	0.919
			BP86	2.29	0.16	1	0.613	0.726	0.050	0.876
			PBE0	2.65	0.39	1	0.649	1.674	0.063	0.926
			BHandHLYP	2.93	0.49	1	0.640	1.559	0.122	0.965
A6	X-12683-23A	2.81	B3LYP+D2	2.61	0.17	1	0.641	1.021	0.505	0.952
			M06	2.52	0.10	1	0.643	0.844	0.575	0.951
			CAM-B3LYP	2.79	0.09	1	0.659	1.174	0.520	0.948
			BP86	2.28	0.12	1	0.673	1.210	0.481	0.939
			PBE0	2.64	0.14	1	0.642	0.963	0.529	0.949
			BHandHLYP	2.93	0.12	1	0.641	1.658	0.536	0.955
A7	X-12683-23C	2.66	B3LYP+D2	2.60	0.47	1	0.661	1.221	0.124	0.950
			M06	2.52	0.21	1	0.645	0.731	0.310	0.911
			CAM-B3LYP	2.78	0.29	1	0.572	2.430	0.152	0.920
			BP86	2.28	0.18	1	0.620	0.775	0.196	0.884
			PBE0	2.64	0.39	1	0.656	1.596	0.138	0.929
			BHandHLYP	2.92	0.48	1	0.606	2.119	0.073	0.963

Table S44. Measured and calculated values of azo dyes using the low energy selection paradigm.

# Cyano excitation data: Low energy selection paradigm

Note: Different excitation data is provided only for the dyes for which the selection has changed (C3-C5).

**Table S45.** Measured and calculated values of cyano dyes using the low energy selection paradigm.

Number	Library Code	Experimental E _{max} (eV)	Functional	Calculated E _{max} (eV)	Osc. Strength	Transition Number	Λ	Δr (Å)	D _{CT} (Å)	Sc
C3	X-12833-83-1	3.20	B3LYP+D2	2.97	0.16	1	0.561	1.899	1.801	0.878
			M06	3.12	0.16	1	0.573	1.878	1.740	0.888
			CAM-B3LYP	3.39	0.19	1	0.576	1.641	1.656	0.901
			BP86	2.52	0.13	1	0.567	1.900	1.805	0.861
			PBE0	3.07	0.16	1	0.560	1.879	1.809	0.881
			BHandHLYP	3.56	0.20	1	0.586	1.569	1.571	0.909
C4	X-12833-88-1	3.36	B3LYP+D2	2.91	0.13	1	0.513	2.226	2.208	0.799
			M06	3.07	0.15	1	0.528	2.105	2.06	0.815
			CAM-B3LYP	3.44	0.23	1	0.550	1.927	1.958	0.824
			BP86	2.26	0.06	1	0.465	2.872	2.906	0.745
			PBE0	3.01	0.14	1	0.516	2.160	2.172	0.803
			BHandHLYP	3.66	0.27	1	0.573	1.740	1.823	0.839
C5	X-12833-89-1	3.37	B3LYP+D2	2.93	0.14	1	0.519	2.232	2.151	0.859
			M06	3.10	0.16	1	0.540	2.081	2.008	0.874
			CAM-B3LYP	3.47	0.23	1	0.553	1.912	1.923	0.881
			BP86	2.28	0.07	1	0.470	2.818	2.684	0.796
			PBE0	3.03	0.15	1	0.517	2.197	2.122	0.862
			BHandHLYP	3.68	0.26	1	0.577	1.679	1.788	0.893

#### **Comments on alternate tautomer of A1**



Figure S24. Schematic showing the alternative tautomer of A1 considered.

As mentioned in the text, A1 seemed to be a moderate outlier in terms of the functional dependence of  $\Delta E_{max}$ . Specifically, in Figure 5a the  $\Delta E_{max}$  values for A1 appear to be red-shifted (more negative) than the other azo dyes. One potential explanation for this is that the dominant form in solution of A1 is an alternate tautomer to the one that was indicated on the sample vial in the MWDL (shown in Figure 1 and Figure S22). Figure S22 shows an alternate tautomer to A1 referred to as A1*. It has been shown that such proton tautomerization can occur for triazole compounds (see references provided in the main text). In this case A1* is calculated as being only 0.8 kcal/mol higher in solvated free energy than A1, supporting this possibility. Performing TD-DFT on A1* does result in modest blue-shifts of  $\Delta E_{max}$  (more positive) with each functional (Figure S23), making it less of an outlier. It may be that a more accurate way of calculating  $\lambda_{max}$  for this dye is to perform a weighted average of the two spectra to simulate an equilibrium mixture in solution. This was not performed here, however, for the sake of simplicity as the corrections would be minor and not significantly alter any of the main conclusions in the paper.



Figure S25.  $\Delta E_{max}$  determined for all six functionals for the azo dyes including the additional tautomer A1*.

### Dependence of $\Delta E_{max}$ on CT parameters

The following plots are analogous to Figure 10 and Figure 11 in the main manuscript. Note that all the below plots are made using the using the highest oscillator strength selection paradigm.



**Figure S26**. Relationship between  $\Lambda$  and  $\Delta E_{max}$  for PBE0, M06, and BHandHLYP.



**Figure S27**. Relationship between  $\Delta r$  and  $\Delta E_{max}$  for PBE0, M06, and BHandHLYP.



Figure S28. Relationship between  $S_C$  and  $\Delta E_{max}$  for BP86, B3LYP+D2, and CAM-B3LYP.



Figure S29. Relationship between  $D_{CT}$  and  $\Delta E_{max}$  for BP86, B3LYP+D2, and CAM-B3LYP.



Figure S30. Relationship between  $S_C$  and  $\Delta E_{max}$  for PBE0, M06, and BHandHLYP.



Figure S31. Relationship between  $D_{CT}$  and  $\Delta E_{max}$  for PBE0, M06, and BHandHLYP.



**Figure S32:** Relationship between  $\Delta \mu$  and  $\Delta E_{max}$  for PBE0, M06, and BHandHLYP.



Figure S33: Relationship between  $\Delta \mu$  and  $\Delta E_{max}$  for BP86, B3LYP+D2, CAM-B3LYP.

### LASSO analysis

We used LASSO analysis to determine whether multivariate regression could capture the relationship between methodological performance and density parameters better than simple linear regression. The target value of the analysis was the error in  $\lambda_{max}$ , referred to as  $\Delta E_{max}$  which is taken as  $E_{max}(calc) - E_{max}(expt)$ . All error values were then normalized by dividing by the standard deviation of the column of errors. Thus, the target of the analysis was  $\Delta E_{max}$  divided by  $\sigma(\Delta E_{max})$  for all dye values. The following table presents the R² values of each multivariate regression for each of the functionals. Beside this, you can see the ranking of each of the CT parameters given in order of importance with 1 being the most important. (For example,  $\Delta r$  dropped out first for B3LYP+D2.) All LASSO plots are provided after the table.

**Table S44.** Order of importance for CT parameters as determined with LASSO analysis.

 Importance is denoted with rank; one is the highest rank.

Functional	$\mathbb{R}^2$	Λ	Δr	D _{CT}	$\mathbf{S}_{\mathbf{C}}$
B3LYP+D2	0.67		1	2	
M06	0.56			1	
CAM-B3LYP	0.56	2	3	1	
BP86	0.85		2	3	1
PBE0	0.59			1	
BHandHLYP	0.61	2	3	1	


Figure S34. LASSO analysis plot for B3LYP+D2 methodology with target of  $\Delta E_{max}$ .



**Figure S35.** LASSO analysis plot for M06 methodology with target of  $\Delta E_{max}$ .



Figure S36. LASSO analysis plot for CAM-B3LYP methodology with target of  $\Delta E_{max}$ .



Figure S37. LASSO analysis plot for BP86 methodology with target of  $\Delta E_{max}$ .



**Figure S38.** LASSO analysis plot for PBE0 methodology with target of  $\Delta E_{max}$ .



**Figure S39.** LASSO analysis plot for BHandHLYP methodology with target of  $\Delta E_{max}$ .

## State-specific solvation root flipping

For some compounds in this study, usage of the IBSF SS polarization scheme caused root flipping, thereby preventing us from comparing transitions properly for affected compounds. As an example of root flipping, consider Table S47 which shows transitions and contributions for a B3LYP+D2 calculation done on dye C3. Results with IBSF solvation show that transition 1 is dominated by the transition between HOMO and LUMO+1 while transition 2 is dominated by the transition between HOMO. Within the LR scheme, transition 1 is dominated by the HOMO to LUMO transition and transition 2 is dominated by the transition between HOMO and LUMO+1. Due to the different orbital compositions reported by the two solvation methods, the CT parameters can vary dramatically across them. This ambiguity in determining a comparable state across the LR and IBSF methods affected BP86 calculations and calculations on dyes C3, C4, and C5. As such, these results were omitted from Table 2 reported in the manuscript.

Table S45.	Excitation	orbital p	airs and	contribution	values	for the	IBSF	and LR	methods for	or dye
C3.										

State	Solvation scheme	Orbitals	Weight	Orbitals	Weight
1	IBSF	84 <b>→</b> 86	0.582	84 <b>→</b> 85	0.391
1	LR	84 <b>→</b> 85	0.695	84 <b>→</b> 86	0.11
2	IBSF	84 <b>→</b> 85	0.575	84 <b>→</b> 86	-0.394
Z	LR	84 <b>→</b> 86	0.689	$84 \rightarrow 85$	-0.113

## **NMR** Characterization Details

¹H, and ¹³C NMR spectra were obtained on a Brüker 500 MHz spectrometer at room temperature. Chemical shifts are listed in parts per million (ppm) and referenced to the residual protons or carbons of the deuterated solvents respectively.

A1. Not soluble in Chloroform

**A2.** ¹H NMR (500 MHz, Chloroform-*d*) δ 12.16 (s, 1H), 8.51 (d, *J* = 2.8 Hz, 1H), 7.79 (d, *J* = 9.1 Hz, 1H), 7.77 (d, *J* = 2.5 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.38 (dd, *J* = 7.9, 6.6 Hz, 4H), 7.34 – 7.29 (m, 5H), 7.26 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.63 (dd, *J* = 9.2, 2.8 Hz, 1H), 4.81 (s, 4H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.51, 153.46, 148.92, 136.71, 133.73, 131.43, 131.07, 130.60, 129.11, 128.89, 128.44, 127.51, 126.80, 117.30, 107.86, 101.92, 54.22, 25.93.

**A3.** ¹H NMR (500 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.7 Hz, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.54 (d, *J* = 2.2 Hz, 1H), 7.41 – 7.28 (m, 14H), 7.25 (dd, *J* = 13.3, 6.6 Hz, 2H), 6.91 – 6.86 (m, 1H), 6.82 (d, *J* = 8.6 Hz, 1H), 4.77 (s, 4H), 2.80 (s, 2H), 2.63 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.51, 153.45, 148.91, 136.71, 133.73, 131.43, 131.07, 130.59, 129.11, 128.90, 128.49, 128.44, 127.51, 126.81, 117.30, 107.87, 101.92, 77.26, 77.05, 76.84, 54.22, 25.94.

**A4.** ¹H NMR (500 MHz, Chloroform-*d*) δ 12.15 (s, 1H), 8.44 (s, 1H), 7.78 (d, *J* = 9.1 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.55 (d, *J* = 2.3 Hz, 1H), 7.39 – 7.29 (m, 7H), 7.28 (s, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 4.70 (s, 2H), 3.64 (q, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H).

**A5.** ¹H NMR (500 MHz, Chloroform-*d*) δ 12.17 (s, 1H), 8.51 (d, *J* = 2.8 Hz, 1H), 7.79 (d, *J* = 9.1 Hz, 1H), 7.77 (d, *J* = 2.5 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.38 (dd, *J* = 8.0, 6.7 Hz, 4H), 7.34 – 7.30 (m, 4H), 7.26 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.63 (dd, *J* = 9.1, 2.8 Hz, 1H), 4.81 (s, 4H), 2.28 (s, 3H).

A6.

**A7.** ¹H NMR (500 MHz, Chloroform-*d*) δ 11.82 (s, 1H), 11.10 (s, 0H), 8.62 (s, 0H), 8.50 (d, *J* = 2.7 Hz, 1H), 8.01 (s, 0H), 7.97 (s, 0H), 7.93 (s, 1H), 7.93 (d, *J* = 2.3 Hz, 0H), 7.87 (d, *J* = 2.1 Hz, 1H), 7.82 (d, *J* = 9.1 Hz, 1H), 7.69 – 7.42 (m, 5H), 7.41 – 7.29 (m, 16H), 7.25 (d, *J* = 7.4 Hz, 1H), 4.81 (s, 4H), 4.47 (s, 2H), 2.30 (s, 3H).

**A8.** ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 2.3 Hz, 1H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.76 (dd, *J* = 8.5, 2.3 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.36 (dd, *J* = 8.0, 6.6 Hz, 2H), 7.33 – 7.29 (m,

1H), 7.27 – 7.24 (m, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.69 (s, 2H), 3.63 (q, *J* = 7.1 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

**A9.** ¹H NMR (500 MHz, Chloroform-*d*) δ 8.38 – 8.33 (m, 2H), 8.00 – 7.93 (m, 4H), 6.94 – 6.87 (m, 2H), 4.34 (t, *J* = 6.2 Hz, 4H), 3.78 (t, *J* = 6.2 Hz, 4H), 2.09 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.85, 156.33, 151.16, 147.63, 144.18, 126.35, 124.76, 124.70, 122.72, 111.80, 61.06, 49.76, 20.86.

A10. ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.36 – 8.32 (m, 2H), 7.96 – 7.92 (m, 2H), 7.91 – 7.87 (m, 2H), 7.39 – 7.34 (m, 2H), 7.32 – 7.29 (m, 1H), 7.25 – 7.21 (m, 2H), 6.90 – 6.85 (m, 2H), 4.81 (s, 2H), 3.98 (t, J = 5.8 Hz, 2H), 3.79 (t, J = 5.8 Hz, 2H), 1.62 (s, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  147.48, 144.05, 137.04, 128.95, 127.41, 126.29, 124.71, 122.60, 112.27, 60.39, 55.01, 53.34.

**C1.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.72 – 7.67 (m, 2H), 7.64 – 7.59 (m, 1H), 7.54 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 8.8, 2.4 Hz, 1H), 7.37 – 7.32 (m, 2H), 6.86 (td, J = 7.7, 1.4 Hz, 1H), 6.79 (dd, J = 8.0, 1.5 Hz, 1H), 6.70 (ddd, J = 8.1, 7.4, 1.5 Hz, 1H), 6.05 – 5.98 (m, 2H). ¹³C NMR (176 MHz, CDCl₃)  $\delta$  144.23, 143.61, 141.80, 136.88, 136.08, 131.65, 131.04, 130.03, 129.89, 129.42, 124.76, 124.13, 122.42, 116.11, 115.04, 114.44, 113.98, 113.20, 112.92, 112.89.

**C2.** ¹H NMR (500 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 9.3 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.40 – 7.37 (m, 1H), 7.34 – 7.30 (m, 3H), 7.24 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.09 – 7.02 (m, 2H), 6.77 – 6.71 (m, 2H), 3.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.41, 154.96, 143.65, 138.03, 132.36, 131.74, 129.92, 129.67, 127.12, 126.68, 121.85, 119.50, 116.07, 114.30, 113.50, 113.30, 112.83, 80.18, 55.72.

**C3.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.91 (dd, J = 2.6, 0.6 Hz, 1H), 8.34 (s, 1H), 8.27 (dd, J = 9.2, 2.7 Hz, 1H), 7.11 (d, J = 9.2 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 3.32 (q, J = 7.1 Hz, 4H), 1.44 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  162.25, 157.46, 153.69, 152.30, 140.30, 128.08, 127.48, 126.67, 126.36, 124.39, 123.04, 118.60, 118.28, 114.65, 103.93, 62.87, 62.76, 47.84, 47.62, 14.17, 13.95, 12.90, 12.82.

**C4.** ¹H NMR (500 MHz, Chloroform-*d*) δ 8.88 (d, *J* = 2.6 Hz, 1H), 8.41 (dd, *J* = 9.0, 2.6 Hz, 1H), 7.96 (s, 1H), 7.23 (d, *J* = 9.1 Hz, 1H), 4.00 – 3.85 (m, 4H), 3.26 – 3.09 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 157.97, 155.36, 142.24, 129.30, 125.59, 123.46, 119.26, 113.05, 111.51, 85.28, 66.55, 53.38.

**C5.** ¹H NMR (500 MHz, Chloroform-*d*) δ 8.78 (d, *J* = 2.6 Hz, 1H), 8.43 (s, 1H), 8.36 (dd, *J* = 9.1, 2.6 Hz, 1H), 8.04 (dd, *J* = 8.5, 1.3 Hz, 2H), 7.81 – 7.77 (m, 1H), 7.68 (dd, *J* = 8.4, 7.4 Hz, 2H),

7.18 (d, *J* = 9.0 Hz, 1H), 4.02 – 3.94 (m, 4H), 3.19 – 3.13 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 158.20, 157.06, 149.73, 147.20, 142.05, 141.44, 138.22, 137.58, 135.37, 135.09, 130.02, 129.97, 128.83, 128.76, 128.62, 128.43, 127.95, 125.45, 123.70, 122.59, 119.92, 118.80, 118.03, 117.23, 114.33, 112.04, 66.67, 66.54, 53.25, 52.80.

**C6.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.40 (d, J = 9.1 Hz, 1H), 8.18 (s, 1H), 7.40 (s, 1H), 7.02 (d, J = 2.7 Hz, 1H), 6.73 (dd, J = 9.2, 2.7 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.75 (t, J = 6.9 Hz, 2H), 3.59 (t, J = 6.8 Hz, 2H), 3.49 (q, J = 7.1 Hz, 2H), 2.66 (s, 4H), 1.41 (s, 9H), 1.38 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  177.53, 177.26, 163.82, 151.47, 148.03, 140.61, 130.93, 116.91, 114.99, 110.35, 108.82, 96.54, 62.11, 47.12, 45.55, 39.78, 35.65, 29.72, 28.20, 28.10, 27.67, 27.57, 14.26, 12.14.

**C7.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.27 (d, J = 9.2 Hz, 1H), 7.50 (s, 1H), 7.33 (s, 1H), 6.86 (d, J = 2.7 Hz, 1H), 6.71 (dd, J = 9.3, 2.7 Hz, 1H), 3.75 (dd, J = 7.8, 6.3 Hz, 2H), 3.57 (t, J = 7.1 Hz, 2H), 3.51 (q, J = 7.1 Hz, 2H), 2.67 (s, 4H), 1.40 (s, 9H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  177.91, 177.18, 152.82, 152.80, 140.63, 130.68, 115.74, 115.09, 114.38, 110.27, 108.58, 74.27, 46.88, 45.27, 39.75, 35.55, 28.19, 27.62, 27.53, 12.27.

**C8.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.30 (d, J = 1.4 Hz, 1H), 7.81 (s, 1H), 6.38 (s, 1H), 3.86 – 3.75 (m, 1H), 3.66 – 3.54 (m, 3H), 2.90 (tq, J = 12.3, 6.3 Hz, 1H), 2.42 (s, 3H), 1.84 (dd, J = 13.4, 4.6 Hz, 1H), 1.58 (t, J = 13.2 Hz, 1H), 1.42 (s, 3H), 1.40 (d, J = 6.6 Hz, 3H), 1.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  154.46, 149.84, 142.06, 127.16, 126.87, 118.92, 116.36, 115.28, 112.59, 72.14, 56.15, 46.81, 45.49, 40.12, 29.55, 26.86, 25.74, 20.08, 19.57.

**C9.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.87 (s, 1H), 7.64 (dd, J = 8.9, 2.3 Hz, 1H), 7.50 (s, 1H), 6.61 (d, J = 8.9 Hz, 1H), 3.82 (tt, J = 11.4, 5.9 Hz, 1H), 3.65 – 3.53 (m, 3H), 2.92 (dt, J = 12.5, 6.1 Hz, 1H), 1.86 (dd, J = 13.3, 4.6 Hz, 1H), 1.61 (d, J = 13.2 Hz, 1H), 1.43 (s, 4H), 1.40 (d, J = 6.5 Hz, 4H), 1.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  158.17, 149.89, 132.85, 129.38, 128.57, 120.04, 115.80, 114.85, 111.20, 72.75, 56.10, 46.91, 45.35, 39.98, 29.48, 26.95, 25.87, 19.45.

**C10.** ¹H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.34 (d, J = 9.1 Hz, 1H), 7.85 (s, 1H), 6.63 (dd, J = 9.2, 2.8 Hz, 1H), 6.55 (d, J = 2.7 Hz, 1H), 3.78 (t, J = 6.8 Hz, 2H), 3.60 (q, J = 7.1 Hz, 2H), 2.70 (t, J = 6.8 Hz, 2H), 2.45 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃)  $\delta$  154.63, 151.11, 143.85, 131.11, 119.37, 117.38, 115.85, 114.63, 113.05, 110.16, 77.24, 77.03, 76.81, 74.07, 46.14, 45.83, 20.59, 16.36, 12.44.

## Liquid Chromatography-Mass Spectrometry (LC-MS)

Samples were analyzed using a liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) instrument which consisted of a 1200 Infinity LC (Agilent Technologies) connected to a 6520 Accurate Mass QTOF-MS (Agilent Technologies). The QTOF was operated in positive electrospray ionization (ESI) mode at high resolution (4 GHz) with a resolving power ranging from 9700 to 18000 for the m/z 100 and 1600 respectively. The parameters of the MS were optimized for the highest intensity of the ions as follows: drying gas flow rate 12 L/min at 355 °C, nebulizer pressure 35 psi, fragmentor voltage 110 V with the V cap voltage 3500 V.

All samples were collected from the NC State MWDL. Stock solutions were prepared by dissolving 1 mg of each dye in 1 mL of acetonitrile (LC-MS grade, 99.9%) to obtain a concentration of 1000  $\mu$ g/mL. The stock solutions were then diluted to a concentration of 30  $\mu$ g/mL with the same solvent. Purified water (18.2 $\Omega$ ) was generated in-house using Milli-Q System (PURELAB Ultra from VWR). Before analysis, all samples were filtered using a 0.2  $\mu$ m PVDF filter (Sigma-Aldrich). The chromatographic separation was achieved by using a Zorbax Eclipse Plus C18 (2.1×50 mm, 3.5  $\mu$ m) column with a Zorbax Eclipse Plus C18 narrow bore guard column (2.1×12.5  $\mu$ m, 5  $\mu$ m) at 40 °C. The mobile phases A and B consisted of water and acetonitrile respectively with 0.1% formic acid (HPLC grade, Sigma-Aldrich) in both. The eluent flow was 0.5 mL/min and an injection volume of the dye solution of 2  $\mu$ L. The acetonitrile concentration started at 40% and was ramped to 90% over 3.5 minutes and held constant for 3.5 minutes. In the next 7 minutes, the acetonitrile concentration was ramped down to 40%, resulting in a total sample run time of 14 min. Diode array detector (DAD) was used for the wavelength analysis. Wavelengths commonly monitored included 254 410, 460, 540 and 610 nm.