Supplementary information// Point defects in two-dimensional BeO monolayer First-principles study on electronic and magnetic properties

A. Bafekry ^{1†}, M. Faraji², S. Karbasizadeh³, A. Bagheri Khatibani⁴, A. Abdolahzadeh Ziabari⁴, D. Gogova⁵, M. Ghergherehchi⁶

 ¹Department of Radiation Application, Shahid Beheshti University, Tehran, Iran
²Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560, Ankara, Turkey
³Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran

⁴Nano Research Lab, Lahijan Branch, Islamic Azad University, Lahijan, Iran

⁵Department of Physics, Chemistry and Biology, Linkoping University, 58183 Linkping, Sweden

⁶Department of Electrical and Computer Engineering, Sungkyunkwan University, 16419 Suwon, Korea

Email: bafekry.asad@gmail.com

Fig S1. (a) DOS and PDOS and (b) average electrostatic potential of the BeO monolayer

Fig S2. Ab initio molecular dynamics (AIMD) for BeO monolayer adsorbed with (a) B, (b) C, (c) S, (d) Mg, (e) V, (f) Mn and (f) Co adatoms at 400 K temperature. Top and side views of the structure after 5 ps of simulation demonstrated as insets.:

	Bridge	Hollow	Top-Be	Тор-О
Η	-226.79986	-226.80171	-226.81356	-226.79584
В	-227.26505	-227.27188	-227.26712	-227.25019
С	-228.57306	-227.34615	-227.35984	-228.57189
Si	-227.43793	-226.87725	-226.80313	-227.44542
Ν	-228.86506	-228.87709	-228.86957	-228.85732
Р	-227.64093	-227.66655	-227.65529	-227.66121
F	-227.91526	-227.13484	-227.82862	-227.72799
Cl	-226.70295	-226.40567	-226.41012	-226.70535
0	-229.41337	-228.13366	-228.19826	-229.41191
S	-227.69754	-226.99702	-226.99481	-226.68792
Li	-226.32698	-226.39173	-226.17169	-226.35329
Na	-226.07887	-226.08967	-226.03544	-226.08304
K	-226.01105	-226.01638	-225.98928	-225.99977
Be	-225.97098	-225.80779	-225.79666	-225.99319
Mg	-225.78610	-225.78665	-225.76619	-225.77971
Ca	-225.94999	-225.87383	-225.82106	-225.93941
Al	-226.44405	-226.42363	-225.78822	-226.64154
Sc	-227.70641	-227.99864	-227.94127	-228.32075
Ti	-227.68110	-228.69347	-228.51916	228.64347
V	-229.91424	-229.58288	-229.51520	-229.90358
Cr	-231.34742	-231.35831	-231.31285	-231.13381
Mn	-230.94163	-230.97700	-230.93986	-231.00963
Fe	-229.57614	-229.25488	-229.30856	-229.40020
Co	-228.15407	-228.01995	-227.89633	-228.15256
Ni	-227.31013	-227.30619	-226.68853	-227.30691
Cu	-226.35145	-226.25015	-226.21660	-225.96193
Zn	-225.82199	-225.83848	-225.81957	-225.81967

TableS1: Total energy of various adatoms at four adsorption sites (including Bridge, Hoollow, Top-Be and Top-O) on the BeO monolayer. The most stable site energy indicated by red colour

Fig S3. (a) Optimized atomic structure of BeO monolayer with adsorbed B atom at top of O host atom. Buckling of O bonded to B inidicated as shematically. (b) Schematic diagram of different electronic states including of metal, half-metal(HM), semiconductor (SC) and dilute magnetic semiconductor (DMSC).

Fig S4. Total DOS and PDOS of different adatom adsorbed on the BeO monolayer

Fig S4. Ab initio molecular dynamics (AIMD) for Be monolayer with (a) a single Be vacancy,

(b) a single O vacancy and (c) double vacancy Be+O defects. at 400 K temperature. Top and side views of the structure after 5 ps of simulation demonstrated as insets.

Fig S5. Ab initio molecular dynamics (AIMD) for BeO monolayer doped with (a) B Be, (b) N Be, (c) C Be, and (d) B O at 400 K temperature. Top and side views of the structure after 5 ps of simulation demonstrated as insets.