Supporting Information

Methanol oxidation on Au(332):

An isothermal pulsed molecular beam study

Christoph D. Feldt¹, Thorren Gimm^{1,2}, Raphaell Moreira¹, Wiebke Riedel¹, Thomas Risse¹

¹Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany

²Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

Corresponding Authors

*E-Mail: risse@chemie.fu-berlin.de; wiebke.riedel@fu-berlin.de

Supplementary Figures

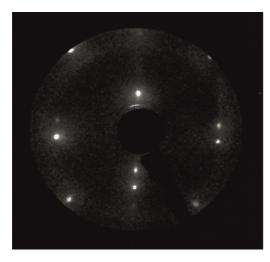
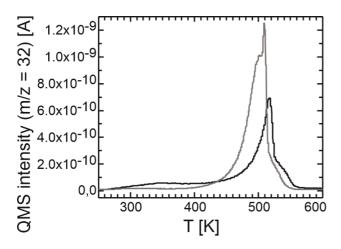
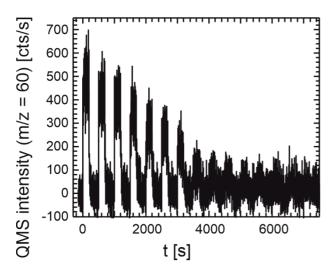




Figure S1. LEED measurement of clean Au(332) surface.

Figure S2. O₂ desorption from Au(332) after exposure to activated oxygen $(0.4 \times 10^{13} \text{ s}^{-1} \text{cm}^{-2})$ for 3000 s of the clean Au(332) surface (grey) corresponding to saturation coverage and for 725 s of the surface covered with formate after a pulsed isothermal methanol oxidation molecular beam experiment (black). Based on a calibration series, which was conducted with a slightly modified experimental setup preventing direct comparison of the absolute intensities, (80-85) % of the saturation coverage are expected to be reached after 700 s of oxygen exposure onto the clean Au(332) surface.

Figure S3. Methyl formate formation rate (m/z = 60) of pulsed, isothermal MB experiment on the methanol oxidation at 230 K on Au(332) for a prolonged pulse sequence (15 pulses) by applying a constant flux of methanol (1.6×10^{-7} mbar, 4.2×10^{13} s⁻¹cm⁻²) and pulsing (200 s on, 300 s off) atomic oxygen (2.6×10^{-3} ML/s, 0.4×10^{13} s⁻¹cm⁻², approx. 0.5 ML per pulse) onto the surface.