Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supporting Information for Can we enhance diradical character using interaction with stoichiometric surfaces of ionic oxides? A theoretical investigation using chemical indices

Kohei Tada,*a Hiroyuki Ozaki,a Koji Fujimaru,^{a,b} Yasutaka Kitagawa,^c Takashi Kawakami, ^{b,d} and Mitsutaka Okumura ^b

a. Research Institute of Electrochemical Energy, Department of Energy and Environment (RIECEN), National Institute of Advanced Industrial Science and Technology (AIST), 1–8–31 Midorigaoka, Ikeda, Osaka 563–8577, Japan.

b. Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

c. Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

d. Riken Center for Computational Science, Kobe, Hyogo 650-0047, Japan.

*Corresponding author Phone: +81-72-751-8566 Fax: +81-72-751-9714 E-mail address: k-tada@aist.go.jp

Contents

Details of computational conditions for DFT	рр. 3–4
Details of electronic structures of Au ₂ /MgO and Au ₂ /BaO	pp. 4–6
Investigation of difference in catalytic activity of TiO ₂ /Ag and ZrO ₂ /Cu toward NO reduction	pp. 7–8
References for supporting information	pp. 9
Table S1	pp. 4
Figure S1	pp. 5
Figure S2	pp. 5
Figure S3	рр. б
Figure S4	рр. б
Figure S5	рр. б
Figure S6	pp. 8
Optimised geometry of Au ₂ /MgO@O ¹	рр. 10–13
Optimised geometry of Au ₂ /MgO@O ²	pp. 14–17
Optimised geometry of Au ₂ /BaO@O ¹	pp. 18–21
Optimised geometry of Au ₂ /BaO@O ²	рр. 22–25

Details of computational conditions for DFT

The DFT/plane-wave calculations were performed using a generic programme for ab initio band calculations, VASP [S1-S4]. The exchange-correlation functional for DFT was GGA-PBE [S5]. The core electrons were treated using the projector augmented plane-wave (PAW) scheme [S6], and the numbers of valence electrons were 11 (Au), 10 (Mg), 10 (Ba), and 6 (O). The cut-off energy for the wavefunction was 500 eV. We investigated the dependence of the estimated diradical characters on the cut-off energy in our previous study [S7]. We assumed that the electron density by the self-consistent field approach converged when the energy difference was below the threshold of 1.0×10^{-7} eV.

The surface sizes of the MgO (001) and BaO (001) models were 3×3 (here, the size of the unit cell was 1×1), and the Γ -centred $3 \times 3 \times 1$ meshes were used for k-point sampling. The surfaces were slab-vacuum models, the layer thickness of the slabs was four atomic layers, and the vacuum region was 2.0 nm. The optimised lattice constant in our previous work [S8] was used for slab models. The geometry optimisation of the atoms in the slabs was performed except for the atoms in the bottom layer; the atoms were fixed to mimic the bulk structure. For Au atoms, movement in the horizontal direction of the surface was restricted, and geometry optimisation was performed only in the vertical direction of the surface.

In this study, the diradical character and other chemical indices were approximately calculated from the charge density. Hence, the approximation accuracy was examined using non-adsorbed models whose exact values of chemical indices can be obtained from the results of the ab initio molecular orbital (AI-MO) calculations, which uses atom-centred basis. The AI-MO calculations were performed using the DFT procedure and the same functional (GGA-PBE) as that used in the band calculation (DFT/plane-wave). The used atom-centred basis set for Au atoms was SDD [S9] and the corresponding core potential was used. The calculations were performed by the Gaussian16 programme [S10].

The values estimated using the electron densities from the DFT/plane-wave and AI-MO calculations, whose results are summarised in Table S1, are compared. Although the chemical indices were estimated using the same equations, there were some differences. These differences originate from the difference in the basis set and core potentials. DFT is a method with a relatively small basis set dependence; however, the calculated electron density and orbitals are not completely the same. Because chemical indices are calculated from orbitals or electron density, the basis set selection should affect the estimated values [S11, S12]. It is difficult to obtain the basis set limit of electron density when using the AI-MO scheme (atom-centred basis sets). While using a plane-wave basis set, it is possible to systematically confirm the convergence to the basis set limit value by increasing the cut-off energy [S7]. However, pseudo-potentials are often used for the core region. In this study, although the wavefunctions for the electrons in the core region are projected to the results of all-electron calculations via the PAW scheme, the electron density is affected by the core region potentials, similar to the dependence of *J* values on the core potential of the PAW scheme [S13]. Nevertheless, the results of the DFT/plane-wave and AI-MO were qualitatively the same.

Table S1. Chemical indices of Au_2 model diradicals without the surface interaction estimated using electron densities obtained from DFT calculations with plane-wave and atom-centred (SDD) basis sets.

	Basis sets	$d = 2.954 \text{ Å}^{*}$ (Au ₂ /MgO@O ¹) **	$d = 4.177 \text{ Å}^{*}$ (Au ₂ /MgO@O ²) **	$d = 3.929 \text{ Å}^{*}$ (Au ₂ /BaO @O ¹) **	$d = 5.562 \text{ Å}^{*}$ (Au ₂ /BaO @O ²) **
y = 1 - B	Plane wave	0.0000	0.0964	0.0002	0.7428
	SDD	0.0000	0.4309	0.3022	0.8298
T = b	Plane wave	1.0000	0.6326	0.9821	0.1308
	SDD	1.0000	0.3123	0.4066	0.0857
$n_{\rm b} = 2 - n_{\rm a}$	Plane wave	2.0000	1.6326	1.9821	1.1308
	SDD	2.0000	1.3123	1.4066	1.0857
Ι	Plane wave	-1.3863	-0.4324	-1.2841	-0.0172
	SDD	-1.3863	-0.0992	-0.1702	-0.0074

*Distance between Au atoms. ** Corresponding adsorbed models.

Details of electronic structures of Au₂/MgO and Au₂/BaO

Au is weakly chemisorbed by oxide ions on the stoichiometric oxide surface [S8, S14-S16]. The interactions include hybridisation with O 2p orbitals while the Au/O orbitals hybridisation is generally small. In the Au/MgO (001) and Au/BaO (001) systems, the O 2pz orbital and the Au 5dz^2 orbital interact (Fig. S1). Since the 5dz^2 orbital is hybridized with the 6s orbital, polarisation is induced in the 6s orbital. The sd hybrid orbital becomes the singly occupied molecular orbital (SOMO), which is the magnetic orbital of Au/MgO and Au/BaO systems. The SOMO contributes to the formation of the Au-Au bond. As polarisation is induced on Au although the orbital correlation between Au/O is small, the charge-dipole interaction occurs because of the charge of the oxide ion and the Au adsorption is stabilised. This Au/O interaction becomes stronger when the surface basicity is higher (i.e., the oxide ion is more electron rich). Therefore, when comparing Au/MgO and Au/BaO, the SOMO energy of Au is higher in Au/BaO, while BaO adsorbs Au with more stability [S8]. The Au/O interaction is detrimental to the formation of Au-Au bonds by SOMO coupling. Therefore, in the adsorption systems, the electron spin remains on Au even in the region where the Au–Au covalent bond occurs in the gas phase and the diradical state becomes stable [S8, S14]. Fig. S2 shows the spin density distributions of three calculated models [Au₂/MgO@O² (a), Au₂/BaO@O¹ (b), and Au₂/BaO@O² (c)] whose ground states are diradical. From these distributions, it can be confirmed that the hybridised orbital Au sd and O p orbitals are the magnetic orbitals. In addition, the Au-O interaction affects the magnetic coupling between Au atoms. This was confirmed by the estimated J values and J-y plots shown in Figs. S3–S5. These variations for the Au-Au interaction can be shown using chemical indices and the calculated results and discussions are described in the main text of the presented paper.

Figure S1. Schematic view of the interactions between Au and MgO (BaO).

Figure S2. Spin distributions of $Au_2/MgO@O^2$ (a), $Au_2/BaO@O^1$ (b), and $Au_2/BaO@O^2$ (c). Yellow and blue represent the distributions of majority and minority spins, respectively. The threshold is 0.005 e⁻ Bohr⁻³.

Figure S3. Relationship between *y* and *J* values. The yellow triangle and blue diamond represent the values calculated using plane-wave basis and atom-centred basis (SDD), respectively.

Figure S4. Relationship between y and J values. The yellow triangle and green cross represent the values of the models without and with the surface interactions, respectively.

Figure S5. Calculated *J* values estimated by the AP scheme. The yellow triangle and green cross represent the values of the models without and with the surface interactions, respectively.

Investigation of difference in catalytic activity of TiO_2/Ag and ZrO_2/Cu toward NO reduction

The reduction of NO_x in the exhaust gas is an indispensable catalytic reaction for gas purification. Heterogeneous catalysts with noble metals such as Rh, Pt, and Pd are used for the catalytic reaction. Therefore, the development of technology that uses alternatives to noble metals is important. Moreover, the catalysts based on non-noble metals must be durable. To this end, we have developed a core–shell catalyst wherein Ag and Cu are covered with stable oxides [S17-S19]. The NO reduction over this core–shell catalyst consists of the following three reactions [S18-S20].

$$2NO(ad) \rightarrow N_2O + O(ad)$$
(s1)
$$N_2O(ad) \rightarrow N_2 + O(ad)$$
(s2)

$$O(ad) + CO \rightarrow CO_2 \tag{s3}$$

Reaction s1 proceeds through the dimerisation of NO, which is a stable radical; hence, the analysis of the diradical state is important. Fig. S6 shows the transition state structures of the first step of reaction s2 (NO dimerisation) and corresponding activation energies estimated by DFT calculation. The computational procedures of the DFT calculation and full path of reaction (s1) were described in our previous work [S20]. TiO₂/Ag has a lower barrier than ZrO₂/Cu, but the reason has not been clear. Then, we estimated the chemical indices using the developed scheme and we show *y* and *b* (= *T*) values for the NO–NO interactions in Fig. S6. Since the adsorbed NO has two SOMOs, the *T* values were estimated as the average value ($T = \sqrt{(N + \int \rho_{BS}(r) dr - \int \rho_{HS}(r) dr)/N}$; here, *N* indicates the number of SOMO), and the *y* values were estimated using the average *T* values. As is clear from the chemical indices (*y*, *T*, and *b*), the NO dimer in the TiO₂/Ag system allows a stronger covalent interaction between NO molecules than the NO dimer in the ZrO₂/Cu. The increase in covalency results the decrease in activation energy. The difference between ZrO_2/Ag and TiO₂/Ag is due to the difference in distance between N and N in the transition state becomes small; therefore, the bond order and activation barrier were decreased. Thus, based on the chemical indices, the variation in covalent interaction during the reaction process can be analysed with the numerical values; hence, it is concluded that the proposed scheme can be used for the theoretical design and investigation of heterogeneous catalysts.

Figure S6. Optimised structures (left panels), atomic distances (d_{X-X} indicates the X–X distance), activation energies (E_a), diradical character (y), and effective bond order between NO molecules (b = T) of the transition states of NO dimerisation by TiO₂/Ag (a) and ZrO₂/Cu (b) core–shell catalyst models. Red, blue, light blue, green, silver, and brown balls represent O, N, Ti, Zr, Ag, and Cu atoms, respectively.

References for supporting information

- [S1] G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558.
- [S2] G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251.
- [S3] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
- [S4] G. Kresse, J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15.
- [S5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [S6] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- [S7] K. Tada, Y. Kitagawa, T. Kawakami, M. Okumura, S. Tanaka, Chem. Lett., 2021, 50, 392.

[S8] K. Tada, A. Hayashi, T. Maruyama, H. Koga, S. Yamanaka, M. Okumura, S. Tanaka, *Mol. Phys.*, 2021, 119, e1791989.

- [S9] P. Schwerdfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowrnaker, and P. D. W. Boyd, J. Chem. Phys., 91 (1989)1762
- [S10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- [S11] T. Kawakami, T. Saito, S. Sharma, S. Yamanaka, S. Yamada, T. Nakajima, M. Okumura, K. Yamaguchi, *Mol. Phys.*, 2017, **115**, 2267.
- [S12] K. Yamaguchi, T. Kawakami, Y. Takano, Y. Kitagawa, Y. Yamashita, H. Fujita, *Int. J. Quant. Chem.*, 2002, 90, 370.
- [S13] K. Tada, T. Kawakami, Y. Kitagawa, M. Okumura, K. Yamaguchi, S. Tanaka, Chem. Lett., 2020, 49, 137.
- [S14] K. Tada, T. Maruyama, H. Koga, M. Okumura, S. Tanaka, Molecules, 2019, 24, 505.
- [S15] K. Tada, H. Koga, A. Hayashi, Y. Kondo, T. Kawakami, S. Yamanaka, M. Okumura, Bull. *Chem. Soc. Jpn.*, 2017, **90**, 506.
- [S16] K. Tada, H. Koga, M. Okumura, S. Tanaka, Surf. Sci., 2018, 670, 23.
- [S17] H. Koga, A. Hayashi, Y. Ato, K. Tada, S. Hosokawa, T. Tanaka, M. Okumura, Catal. Today, 2019, 332, 236.
- [S18] H. Koga, K. Tada, A. Hayashi, Y. Ato, M. Okumura, Chem. Lett., 2017, 46, 456.
- [S19] 32 H. Koga, K. Tada, A. Hayashi, Y. Ato, M. Okumura, Catal. Lett., 2017, 147, 1827.
- [S20] K. Tada, H. Koga, Y. Ato, A. Hayashi, M. Okumura, S. Tanaka, Mol. Phys., 2019, 117, 2251.

Optimised geometry of $Au_2/MgO@O^1$

The lattice constant vectors are in the Å unit. The atomic coordinates are shown as the coordinates relative to the lattice constant.

Lattice c	constants			
a = (12.5	5317125300000001	, 0.00000000	0000000,	0.00000000000000000)
b = (0.00	00000000000000,	12.5317125300	000001,	0.0000000000000000)
c = (0.00)00000000000000,	0.0000000000	000000,	26.2658557891999997)
Atomic	coordinates			
Au	0.000000000	0.000000000	0.341410	461
Au	0.166666667	0.166666667	0.342281	316
Mg	0.000000000	0.000000000	0.000000	000
Mg	0.166666667	0.166666667	0.000000	000
Mg	-0.000199267	0.166796405	0.082124	074
Mg	0.166796404	-0.000199269	0.082124	074
Mg	3.19365E-05	3.19329E-05	0.163851	828
Mg	0.166547672	0.166547672	0.163902	25
Mg	-0.001736479	0.168664399	0.248003	927
Mg	0.168664407	-0.001736481	0.248003	925
Mg	0.333333333	0.000000000	0.000000	000
Mg	0.500000000	0.166666667	0.000000	000
Mg	0.333519342	0.166587717	0.082070	436
Mg	0.499893821	-4.04312E-05	0.082068	468
Mg	0.333289228	8.78326E-06	0.164782	235
Mg	0.500029673	0.166589126	0.164549	383
Mg	0.335668421	0.166701186	0.246376	209
Mg	0.500160824	-0.000185976	0.246027	872
Mg	0.666666666	0.000000000	0.000000	000
Mg	0.833333334	0.166666667	0.000000	000
Mg	0.666585208	0.166614016	0.082134	648
Mg	0.83313759	2.49883E-07	0.082131	478
Mg	0.666325498	3.00818E-05	0.164488	949
Mg	0.833467702	0.166681331	0.164865	49
Mg	0.666242609	0.166902586	0.245978	846
Mg	0.830799563	-3.12989E-05	0.246243	641
Mg	0.000000000	0.333333333	0.000000	000
Mg	0.166666667	0.500000000	0.000000	000
Mg	-4.04303E-05	0.499893823	0.082068	472
Mg	0.166587714	0.333519346	0.082070	438
Mg	8.78481E-06	0.333289227	0.164782	240

Mg	0.166589124	0.500029674	0.164549394
Mg	-0.000185979	0.500160821	0.246027885
Mg	0.166701187	0.335668417	0.246376218
Mg	0.00000000	0.666666667	0.000000000
Mg	0.166666667	0.833333334	0.000000000
Mg	2.51198E-07	0.833137588	0.08213148
Mg	0.166614015	0.666585207	0.082134652
Mg	3.00824E-05	0.666325498	0.164488958
Mg	0.166681334	0.833467697	0.164865496
Mg	-3.12981E-05	0.830799563	0.246243647
Mg	0.166902588	0.666242606	0.245978864
Mg	0.333333333	0.333333333	0.000000000
Mg	0.50000000	0.50000000	0.000000000
Mg	0.333370368	0.499986701	0.082172536
Mg	0.499986697	0.333370373	0.082172534
Mg	0.333328710	0.333328714	0.164726519
Mg	0.500002221	0.500002224	0.164555737
Mg	0.333786634	0.500271670	0.245986872
Mg	0.500271673	0.333786630	0.245986860
Mg	0.333333333	0.666666667	0.000000000
Mg	0.500000000	0.833333334	0.000000000
Mg	0.333401865	0.833379442	0.082166015
Mg	0.499988196	0.666635663	0.082150661
Mg	0.333395725	0.666604338	0.164649202
Mg	0.499977755	0.833416490	0.164555743
Mg	0.333991372	0.832940288	0.246021491
Mg	0.50009529	0.666476490	0.245927170
Mg	0.666666667	0.333333333	0.000000000
Mg	0.833333334	0.500000000	0.000000000
Mg	0.666635661	0.499988200	0.082150660
Mg	0.833379445	0.333401867	0.082166015
Mg	0.666604339	0.333395726	0.164649192
Mg	0.833416491	0.499977756	0.164555744
Mg	0.666476491	0.500095287	0.245927162
Mg	0.832940288	0.333991365	0.246021485
Mg	0.666666667	0.666666667	0.000000000
Mg	0.833333334	0.833333334	0.000000000
Mg	0.666562363	0.833375125	0.082080596
Mg	0.833375125	0.666562364	0.082080598
Mg	0.666598981	0.666598983	0.164613161
Mg	0.833374491	0.833374492	0.164658431
Mg	0.666201388	0.833120292	0.245973864

Mg	0.833120288	0.666201390	0.245973866
0	0.166666667	0.000000000	0.000000000
0	0.000000000	0.166666667	0.000000000
0	5.40688E-05	5.40637E-05	0.082297155
0	0.166558206	0.166558212	0.082359509
0	0.166330802	0.000254357	0.165062478
0	0.000254365	0.166330799	0.165062483
0	-0.000817936	-0.000817944	0.246882433
0	0.167731712	0.167731699	0.247129092
0	0.500000000	0.000000000	0.000000000
0	0.333333333	0.166666667	0.000000000
0	0.333379988	1.94509E-05	0.082247993
0	0.499866308	0.166358544	0.082162201
0	0.499930728	1.82201E-05	0.164183558
0	0.333118353	0.166554731	0.164620479
0	0.334002963	-3.90055E-05	0.247592964
0	0.500410221	0.166727001	0.247620209
0	0.833333334	0.000000000	0.000000000
0	0.666666667	0.166666667	0.000000000
0	0.66635025	4.84397E-06	0.082107423
0	0.833460854	0.166551667	0.082442868
0	0.833414909	-2.43889E-05	0.164586618
0	0.66653398	0.166564235	0.164352129
0	0.665955025	-3.00592E-05	0.247671626
0	0.832692798	0.166895293	0.247374690
0	0.166666667	0.333333333	0.000000000
0	0.000000000	0.500000000	0.000000000
0	1.94566E-05	0.333379995	0.082247998
0	0.166358539	0.499866315	0.082162213
0	0.166554724	0.333118360	0.164620494
0	1.8225E-05	0.499930731	0.164183579
0	-3.90158E-05	0.334002946	0.247592987
0	0.166727001	0.500410212	0.247620248
0	0.166666667	0.6666666667	0.000000000
0	0.000000000	0.833333334	0.000000000
0	4.8488E-06	0.666350248	0.082107434
0	0.166551666	0.833460843	0.082442873
0	0.166564236	0.666533976	0.164352157
0	-2.43836E-05	0.833414900	0.164586628
0	-3.00734E-05	0.665955029	0.247671657
0	0.166895307	0.832692804	0.247374704
0	0.500000000	0.333333333	0.000000000

0	0.333333333	0.500000000	0.000000000
0	0.333300939	0.333300954	0.082358699
0	0.500007232	0.500007244	0.082228718
0	0.499908109	0.333386565	0.164434447
0	0.333386556	0.499908116	0.164434465
0	0.333472781	0.333472768	0.247732015
0	0.500029143	0.500029127	0.247507338
0	0.500000000	0.666666667	0.000000000
0	0.333333333	0.833333334	0.000000000
0	0.333315833	0.666622337	0.082317837
0	0.499967547	0.833646144	0.082104052
0	0.500004157	0.666562129	0.164402551
0	0.33348098	0.833441590	0.164374972
0	0.333509182	0.666553194	0.247661322
0	0.500088622	0.833278318	0.247691975
0	0.833333334	0.333333333	0.000000000
0	0.666666667	0.500000000	0.000000000
0	0.66662234	0.333315842	0.082317828
0	0.833646152	0.499967553	0.082104054
0	0.833441603	0.333480977	0.164374965
0	0.666562127	0.500004163	0.164402540
0	0.666553196	0.333509167	0.247661286
0	0.833278303	0.500088611	0.247691964
0	0.833333334	0.666666667	0.000000000
0	0.666666667	0.833333334	0.000000000
0	0.666659553	0.666659557	0.082310601
0	0.833441652	0.833441648	0.082359867
0	0.833459901	0.666576122	0.164343804
0	0.666576116	0.833459899	0.164343800
0	0.666612440	0.666612439	0.247640301
0	0.833274897	0.833274912	0.247611812

Optimised geometry of $Au_2/MgO@O^2$

The lattice constant vectors are in the Å unit. The atomic coordinates are shown as the coordinates relative to the lattice constant.

Lattice c	constants			
a = (12.5	5317125300000001	, 0.00000000	0000000,	0.0000000000000000)
b = (0.00	000000000000000,	12.5317125300	000001,	0.0000000000000000)
c = (0.00)00000000000000,	0.0000000000	000000,	26.2658557891999997)
Atomic	coordinates			
Au	0.000000000	0.000000000	0.334763	807
Au	0.000000000	0.333333333	0.335203	693
Mg	0.000000000	0.000000000	0.000000	000
Mg	0.166666667	0.166666667	0.000000	000
Mg	2.96698E-06	0.166643109	0.081942	337
Mg	0.166990779	1.057E-05	0.082097	428
Mg	1.10271E-05	0.999913654	0.163028	999
Mg	0.166505555	0.166597824	0.165171	620
Mg	-1.13478E-05	0.166557995	0.248062	148
Mg	0.170275777	0.999644653	0.247025	803
Mg	0.333333333	0.000000000	0.000000	000
Mg	0.50000000	0.166666667	0.000000	000
Mg	0.333384604	0.166586685	0.082178	059
Mg	0.499997764	5.44792E-07	0.082046	715
Mg	0.333510274	0.999979522	0.164518	749
Mg	0.499997526	0.166561746	0.164545	946
Mg	0.334236778	0.166469114	0.246026	048
Mg	0.499985419	0.999833608	0.245927	124
Mg	0.666666666	0.000000000	0.000000	000
Mg	0.833333334	0.166666667	0.000000	000
Mg	0.6666083	0.166587936	0.082171	906
Mg	0.833025263	1.9209E-05	0.082087	159
Mg	0.666492628	-1.70457E-05	0.164508	99
Mg	0.833489644	0.166593014	0.165167	992
Mg	0.665747018	0.166457573	0.246027	471
Mg	0.829707324	0.999639255	0.247020	067
Mg	0.000000000	0.333333333	0.000000	000
Mg	0.166666667	0.500000000	0.000000	000
Mg	7.28413E-06	0.500225642	0.081965	524
Mg	0.16690071	0.333349075	0.082042	728
Mg	-2.44038E-06	0.333488472	0.163043	04

Mg	0.166531242	0.499852901	0.164811528
Mg	-8.52795E-06	0.502867876	0.246987178
Mg	0.170294513	0.333727279	0.247073699
Mg	0.00000000	0.666666667	0.000000000
Mg	0.166666667	0.833333334	0.000000000
Mg	8.38733E-06	0.833034678	0.082053313
Mg	0.166685464	0.666549541	0.082185114
Mg	1.34803E-06	0.666546699	0.164559928
Mg	0.166574796	0.833432856	0.164888047
Mg	2.92372E-06	0.830053761	0.246988487
Mg	0.167478386	0.666453545	0.245963365
Mg	0.333333333	0.333333333	0.000000000
Mg	0.500000000	0.50000000	0.000000000
Mg	0.333359785	0.500003156	0.082169719
Mg	0.49999561	0.333325678	0.082148647
Mg	0.333468032	0.333322997	0.164624014
Mg	0.500000762	0.499961506	0.164497309
Mg	0.334019494	0.500299556	0.245926034
Mg	0.49999861	0.333456427	0.245948369
Mg	0.333333333	0.666666667	0.000000000
Mg	0.500000000	0.833333334	0.000000000
Mg	0.333385658	0.833343613	0.082125256
Mg	0.500001053	0.666612776	0.082122384
Mg	0.333405047	0.66658487	0.16457022
Mg	0.500000518	0.833398972	0.164503063
Mg	0.334003581	0.832990975	0.245930633
Mg	0.499997048	0.666530536	0.245879117
Mg	0.666666667	0.333333333	0.000000000
Mg	0.833333334	0.500000000	0.000000000
Mg	0.666641738	0.499996748	0.082169274
Mg	0.833097302	0.333340876	0.082040847
Mg	0.666526749	0.333314116	0.164623942
Mg	0.833462744	0.499835189	0.164814434
Mg	0.665980394	0.500293316	0.245932941
Mg	0.829698003	0.333707582	0.247074237
Mg	0.666666667	0.666666667	0.000000000
Mg	0.833333334	0.833333334	0.000000000
Mg	0.666620840	0.833341199	0.082114814
Mg	0.833320489	0.666540552	0.082180423
Mg	0.666593624	0.666569828	0.164568937
Mg	0.833432026	0.833434604	0.164876547
Mg	0.665988973	0.832982924	0.245926816

Mg	0.832517432	0.666459813	0.245965707
0	0.166666667	0.000000000	0.000000000
0	0.000000000	0.166666667	0.000000000
0	8.639E-06	0.000111121	0.082106963
0	0.166410088	0.166651108	0.082446541
0	0.166104379	-1.05346E-05	0.16473985
0	-2.32508E-06	0.166547069	0.165139194
0	-1.85721E-05	0.998848696	0.247159253
0	0.167048209	0.166732114	0.247058321
0	0.500000000	0.000000000	0.000000000
0	0.333333333	0.166666667	0.000000000
0	0.333397517	8.7042E-06	0.082195475
0	0.49999812	0.166356013	0.082086916
0	0.500011156	-7.15268E-06	0.16417615
0	0.333453177	0.166546312	0.164347967
0	0.334304150	-7.00994E-05	0.24762193
0	0.499983471	0.166532787	0.247585569
0	0.833333334	0.000000000	0.000000000
0	0.666666667	0.166666667	0.000000000
0	0.666585678	1.07683E-05	0.082175747
0	0.833600350	0.166662368	0.082441636
0	0.833892991	-1.85451E-05	0.164732911
0	0.666539661	0.166533569	0.164354013
0	0.665676028	-6.04194E-05	0.24761462
0	0.832945783	0.166705279	0.247062402
0	0.166666667	0.333333333	0.000000000
0	0.000000000	0.500000000	0.000000000
0	-1.31638E-06	0.33344636	0.082104803
0	0.166273691	0.499736383	0.082184761
0	0.16588401	0.333209469	0.164864643
0	3.46011E-06	0.499562736	0.164456787
0	-1.33283E-05	0.334310543	0.247645131
0	0.166987398	0.500040690	0.247222649
0	0.166666667	0.666666667	0.000000000
0	0.000000000	0.833333334	0.000000000
0	5.09662E-06	0.666374562	0.082207482
0	0.166501535	0.833417293	0.082381518
0	0.166512476	0.666552266	0.164345841
0	-1.75804E-05	0.833884452	0.164711601
0	1.34245E-05	0.666368195	0.247575904
0	0.167151977	0.833067122	0.247234523
0	0.500000000	0.333333333	0.000000000

0	0.333333333	0.50000000	0.000000000
0	0.333274000	0.333332709	0.082371955
0	0.499998604	0.499903108	0.082129270
0	0.500009173	0.333428067	0.164292504
0	0.333424494	0.499903222	0.164376019
0	0.334302661	0.333299843	0.247596115
0	0.499986639	0.500013532	0.247455603
0	0.500000000	0.666666667	0.000000000
0	0.333333333	0.833333334	0.000000000
0	0.333302875	0.666582863	0.082299291
0	0.499998465	0.833623218	0.082085352
0	0.499992456	0.666562795	0.164285238
0	0.33346407	0.833462953	0.164347176
0	0.333553386	0.666587423	0.247563181
0	0.500005605	0.833225133	0.247583687
0	0.833333334	0.333333333	0.000000000
0	0.666666667	0.50000000	0.000000000
0	0.666730939	0.333330194	0.082363499
0	0.833722251	0.499727907	0.082183538
0	0.834099068	0.333204222	0.164864581
0	0.666578345	0.499897444	0.164388415
0	0.665675789	0.333301663	0.247601734
0	0.832986086	0.500029433	0.247220237
0	0.833333334	0.666666667	0.000000000
0	0.666666667	0.833333334	0.000000000
0	0.666698270	0.666567029	0.082292818
0	0.833532927	0.833440137	0.082366945
0	0.833479202	0.666535455	0.164340850
0	0.666541015	0.833443004	0.164331109
0	0.666434477	0.666595884	0.247551930
0	0.83283722	0.833044166	0.247230851

Optimised geometry of $Au_2/BaO@O^1$

The lattice constant vectors are in the Å unit. The atomic coordinates are shown as the coordinates relative to the lattice constant.

a = (16	.6846246700000016	, 0.0000000	00000000,	0.00000000000000000)
b = (0.0	0000000000000000,	16.684624670	0000016,	0.0000000000000000000000000000000000000
c = (0.0	000000000000000,	0.000000000	0000000,	28.3423118591000005)
Atomic	coordinates			
Au	0.000117496	0.000204716	0.368910)239
Au	0.1666666667	0.166666667	0.368961	1998
Ba	0.000000000	0.000000000	0.000000	0000
Ba	0.1666666667	0.166666667	0.000000	0000
Ba	0.333502927	0.166589515	0.096289	9988
Ba	0.166994525	0.999648916	0.096507	7321
Ba	0.000177292	0.333404659	0.198296	5871
Ba	0.166283893	0.166252194	0.198255	5975
Ba	0.338576435	0.167646364	0.297630)799
Ba	0.167650752	0.338531578	0.297644	1322
Ba	0.333333333	0.000000000	0.000000	0000
Ba	0.500000000	0.166666667	0.000000	0000
Ba	0.666842459	0.166691642	0.096059	9296
Ba	0.499984813	0.99985673	0.096099	9365
Ba	0.332787906	0.332758263	0.198135	5768
Ba	0.500170959	0.166580663	0.197787	7894
Ba	0.665966361	0.167766289	0.296118	3377
Ba	0.500415991	0.334803545	0.295809	9264
Ba	0.666666666	0.000000000	0.000000	0000
Ba	0.833333333	0.166666667	0.000000	0000
Ba	0.999640493	0.166996713	0.096534	4506
Ba	0.833323612	1.35922E-05	0.096324	4552
Ba	0.666439279	0.333465891	0.197475	5612
Ba	0.833245679	0.166495025	0.198318	3406
Ba	0.994046551	0.172687226	0.298773	3611
Ba	0.831069883	0.335634966	0.295855	5514
Ba	0.000000000	0.333333333	0.000000	0000
Ba	0.166666667	0.500000000	0.000000	0000
Ba	0.333193367	0.499709091	0.096104	1823
Ba	0.166582943	0.333414799	0.096304	1432
Ва	0.000130019	0.666689762	0.197865	5722

Ba	0.166607079	0.500066275	0.197773114
Ba	0.334686733	0.500341966	0.295818166
Ba	0.167792239	0.665984005	0.296110157
Ba	0.000000000	0.666666666	0.000000000
Ba	0.166666667	0.833333333	0.000000000
Ba	0.333320725	0.833327462	0.096036806
Ba	0.166731347	0.666808534	0.096073344
Ba	0.000473413	0.000482077	0.19832599
Ba	0.166564126	0.833299749	0.198242777
Ba	0.335626510	0.831077713	0.295822013
Ba	0.172719700	0.994115560	0.298740002
Ba	0.333333333	0.333333333	0.000000000
Ba	0.500000000	0.500000000	0.000000000
Ba	0.666800871	0.499926183	0.095959841
Ba	0.499770916	0.333175916	0.096046985
Ba	0.333385165	0.666318953	0.197421838
Ba	0.499815848	0.499811742	0.197232419
Ba	0.666116631	0.500563864	0.295576108
Ba	0.500490560	0.665941162	0.295528428
Ba	0.333333333	0.666666666	0.000000000
Ba	0.500000000	0.833333333	0.000000000
Ba	0.666976243	0.833393362	0.096045124
Ba	0.499938121	0.666678295	0.095883168
Ba	0.333482431	0.000156287	0.198190361
Ва	0.500286221	0.833166514	0.197437539
Ba	0.666228936	0.831836887	0.29577804
Ba	0.500765179	0.998941874	0.296022346
Ba	0.666666666	0.333333333	0.000000000
Ba	0.833333333	0.50000000	0.000000000
Ba	0.99994453	0.499919943	0.096116351
Ba	0.833356451	0.333259682	0.096087532
Ba	0.666854281	0.666693217	0.197258760
Ba	0.833295748	0.500305727	0.197436746
Ba	0.999055968	0.500657972	0.296123211
Ba	0.831977431	0.666152214	0.295814856
Ba	0.666666666	0.666666666	0.000000000
Ba	0.833333333	0.833333333	0.000000000
Ba	0.000111974	0.833247610	0.096252748
Ва	0.833494033	0.666977521	0.096068201
Ва	0.666792784	5.0175E-05	0.197814612
Ba	0.833967716	0.833942049	0.198196205
Ba	0.999111836	0.828148279	0.297675044

Ba	0.828103371	0.999122490	0.297762724
0	0.166666667	0.000000000	0.000000000
0	0.000000000	0.166666667	0.000000000
0	0.000287871	8.77777E-05	0.095768670
0	0.166478471	0.166577120	0.095703298
0	0.166774762	0.000125034	0.202023761
0	8.56728E-05	0.166753725	0.202033138
0	0.998814144	0.334032735	0.290076769
0	0.166829494	0.167138300	0.290915877
0	0.500000000	0.000000000	0.000000000
0	0.333333333	0.166666667	0.000000000
0	0.333694122	-0.000148999	0.093497574
0	0.499854378	0.166335821	0.094037492
0	0.500569657	-0.00025281	0.201880204
0	0.332962327	0.166593927	0.202057666
0	0.334032925	0.334046631	0.289838509
0	0.499921952	0.166556132	0.290527585
0	0.833333333	0.000000000	0.000000000
0	0.666666666	0.166666667	0.000000000
0	0.667158421	-1.74041E-06	0.094395532
0	0.833076408	0.166672567	0.093360527
0	0.833934979	0.000425572	0.202212415
0	0.666195451	0.166896767	0.201979268
0	0.666181417	0.333936675	0.290069024
0	0.832512958	0.167886530	0.290146042
0	0.166666667	0.333333333	0.000000000
0	0.000000000	0.500000000	0.000000000
0	1.81544E-05	0.333306715	0.093022964
0	0.166654185	0.500011147	0.094478233
0	0.166512417	0.332868842	0.202030907
0	-2.91702E-05	0.500322786	0.201979621
0	-6.42545E-06	0.666664648	0.290607971
0	0.166648116	0.499979075	0.290607592
0	0.166666667	0.666666666	0.000000000
0	0.000000000	0.833333333	0.000000000
0	0.000507285	0.667039878	0.094147474
0	0.166653729	0.833334382	0.093057691
0	0.166700724	0.666390212	0.201982254
0	0.000305830	0.833807953	0.202206929
0	0.999479914	-8.57751E-05	0.290961542
0	0.167844412	0.832758138	0.290012552
0	0.500000000	0.333333333	0.000000000

0	0.333333333	0.50000000	0.000000000
0	0.333317657	0.333308594	0.093022007
0	0.499994966	0.499992940	0.094455373
0	0.500108854	0.333298029	0.201613592
0	0.333366025	0.500006063	0.201618790
0	0.333795047	0.666019439	0.290085807
0	0.499708533	0.499799437	0.290282779
0	0.50000000	0.666666666	0.000000000
0	0.333333333	0.833333333	0.000000000
0	0.333381323	0.666157813	0.093393000
0	0.499995070	0.833349257	0.093049448
0	0.500072882	0.666546014	0.201602333
0	0.334223489	0.832416109	0.201598415
0	0.334007300	0.998781357	0.290062111
0	0.500389512	0.832567081	0.290077975
0	0.833333333	0.333333333	0.000000000
0	0.666666666	0.50000000	0.000000000
0	0.666673284	0.33335317	0.093053016
0	0.833383040	0.500367899	0.093626524
0	0.832444248	0.334258493	0.201605051
0	0.666590747	0.500068032	0.201607464
0	0.666610563	0.666072369	0.290184585
0	0.832737833	0.500511254	0.290082838
0	0.833333333	0.666666666	0.000000000
0	0.666666666	0.833333333	0.000000000
0	0.666902454	0.666622867	0.094136491
0	0.833344575	0.833357771	0.093014469
0	0.83329647	0.666732992	0.201646847
0	0.666639639	0.833343611	0.201694604
0	0.666666158	-7.86439E-06	0.290615118
0	0.832573446	0.832576002	0.289816633

Optimised geometry of $Au_2/BaO@O^2$

The lattice constant vectors are in the Å unit. The atomic coordinates are shown as coordinates relative to the lattice constant.

Lattice constants

	a = (16.6	84624670000016	, 0.000000000)000000,	0.00000000000000000)
b = (0.0000000000000000,		000000000000000,	16.6846246700000016,		0.0000000000000000000000000000000000000
	c = (0.00	00000000000000,	0.00000000000)00000,	28.3423118591000005)
	Atomic c	coordinates			
	Au	6.75322E-06	0.666526358	0.3685069	028
	Au	6.75322E-06	0.333193024	0.3684596	554
	Ba	0.000000000	0.000000000	0.0000000	000
	Ba	0.166666667	0.166666667	0.0000000	000
	Ba	0.333117755	0.166550772	0.0960664	17
	Ba	0.166760248	-5.74336E-05	0.0961922	267
	Ba	-9.95368E-05	0.332932324	0.1971755	599
	Ba	0.166342977	0.166928871	0.1981990)23
	Ba	0.334186932	0.165642047	0.2957325	589
	Ba	0.172338098	0.332813777	0.2973540)85
	Ba	0.333333333	0.000000000	0.0000000	000
	Ba	0.500000000	0.166666667	0.0000000	000
	Ba	0.666853388	0.166548984	0.0959651	25
	Ba	0.499985480	-4.75754E-05	0.0957488	364
	Ba	0.333429112	0.333330376	0.1975579	951
	Ba	0.499933500	0.166464509	0.1974833	372
	Ba	0.665658880	0.165590029	0.2957475	578
	Ba	0.499984684	0.332941529	0.2958247	734
	Ba	0.666666666	0.000000000	0.0000000	000
	Ba	0.833333333	0.166666667	0.0000000	000
	Ba	-3.45057E-05	0.166277917	0.0961149	987
	Ba	0.833184347	-6.70332E-05	0.0961965	538
	Ba	0.666481618	0.333251527	0.1975323	343
	Ba	0.833554207	0.166947889	0.1982529	001
	Ba	-5.59004E-05	0.161515315	0.2973966	559
	Ba	0.827550377	0.332771911	0.2974102	206
	Ba	0.000000000	0.333333333	0.0000000	000
	Ba	0.166666667	0.50000000	0.0000000	000
	Ba	0.333185195	0.499999970	0.0961911	.74
	Ba	0.167060700	0.333404551	0.0962918	325
	Ba	-5.26802E-05	0.667053427	0.1972378	350

Ba	0.166299902	0.499989941	0.198553772
Ba	0.334420234	0.499910893	0.296001589
Ba	0.172417611	0.667029301	0.297430197
Ba	0.000000000	0.666666666	0.000000000
Ba	0.166666667	0.833333333	0.000000000
Ba	0.333137917	0.833369332	0.096078093
Ba	0.167065971	0.666602916	0.096273889
Ba	-2.03046E-05	-6.32429E-05	0.197600707
Ba	0.166360650	0.832910862	0.198294716
Ba	0.334205101	0.834170295	0.295795300
Ba	0.168727288	-2.83079E-05	0.295942153
Ba	0.333333333	0.333333333	0.000000000
Ba	0.500000000	0.500000000	0.000000000
Ba	0.666860028	0.499965105	0.096131699
Ba	0.499974111	0.333313496	0.095841956
Ba	0.333492074	0.666560243	0.197573161
Ba	0.500041196	0.499834513	0.197675714
Ba	0.665546295	0.499875355	0.295987174
Ba	0.500024721	0.667002179	0.295852399
Ba	0.333333333	0.666666666	0.000000000
Ba	0.500000000	0.833333333	0.000000000
Ba	0.666868848	0.833355945	0.096064969
Ba	0.500005015	0.666603940	0.095949460
Ba	0.333222591	-0.000152882	0.197337867
Ba	0.500015974	0.833280981	0.197512991
Ba	0.665715776	0.834291615	0.295811029
Ba	0.499952869	-6.70655E-05	0.295621117
Ba	0.666666666	0.333333333	0.000000000
Ba	0.833333333	0.500000000	0.000000000
Ba	-4.10705E-06	0.500022090	0.096335533
Ba	0.832919252	0.333384886	0.096198189
Ba	0.666506274	0.666599895	0.197589688
Ba	0.833652418	0.499934477	0.19856688
Ba	-0.00014713	0.499964067	0.297988644
Ba	0.827553565	0.667129076	0.297454266
Ba	0.666666666	0.666666666	0.000000000
Ba	0.833333333	0.833333333	0.000000000
Ba	-4.01148E-05	0.833690837	0.096133147
Ba	0.832920349	0.666609333	0.096283907
Ba	0.666643600	-9.38906E-05	0.197306256
Ba	0.833578318	0.832970889	0.198292745
Ba	-3.81213E-05	0.838460784	0.29747375

Ba	0.831261025	-4.51557E-06	0.295943498
0	0.166666667	0.000000000	0.000000000
0	0.000000000	0.166666667	0.000000000
0	3.23792E-05	5.69443E-05	0.094509069
0	0.166603589	0.166673312	0.092981219
0	0.166718660	-8.8327E-05	0.201619375
0	-5.98909E-05	0.167053501	0.202052367
0	-8.77053E-06	0.333323361	0.290641346
0	0.167666070	0.165938302	0.289795505
0	0.500000000	0.000000000	0.000000000
0	0.333333333	0.166666667	0.000000000
0	0.333683386	0.000104053	0.093883740
0	0.500026662	0.166671143	0.093052378
0	0.499973008	-0.000102689	0.201623098
0	0.333561469	0.166656444	0.201611847
0	0.333490164	0.333173424	0.290482694
0	0.500009730	0.165848252	0.290034236
0	0.833333333	0.000000000	0.000000000
0	0.666666666	0.166666667	0.000000000
0	0.666665336	-0.000403865	0.093837328
0	0.833371225	0.166660583	0.092995757
0	0.833330555	-6.71863E-05	0.201683433
0	0.666398087	0.166562854	0.201609692
0	0.666267411	0.333182586	0.290387121
0	0.832664072	0.165789616	0.289868052
0	0.166666667	0.333333333	0.000000000
0	0.000000000	0.500000000	0.000000000
0	-0.00010837	0.333534055	0.095868673
0	0.16664337	0.500023796	0.09275072
0	0.165913514	0.332945384	0.201805548
0	-0.00014347	0.500135256	0.201998504
0	-1.71572E-05	0.666799406	0.290715408
0	0.168356964	0.499736618	0.289448462
0	0.1666666667	0.666666666	0.000000000
0	0.000000000	0.833333333	0.000000000
0	-1.01011E-05	0.666965985	0.095866121
0	0.166635694	0.833316246	0.093006125
0	0.166234895	0.666738950	0.202067242
0	-1.06311E-05	0.832983997	0.202078789
0	1.05436E-05	-2.15244E-05	0.290603576
0	0.167675647	0.833963633	0.289895644
0	0.500000000	0.333333333	0.000000000

0	0.333333333	0.50000000	0.000000000
0	0.333335078	0.333330388	0.094468643
0	0.500024529	0.499987847	0.093052749
0	0.499969557	0.333234745	0.20163941
0	0.333938494	0.500014602	0.201631704
0	0.333506231	0.666691178	0.290514663
0	0.500187093	0.499226258	0.290080534
0	0.50000000	0.666666666	0.000000000
0	0.333333333	0.833333333	0.000000000
0	0.333309562	0.666678591	0.094457275
0	0.499999105	0.833297544	0.093045739
0	0.499986718	0.666685354	0.201738751
0	0.333519007	0.83333569	0.201565709
0	0.333888713	-0.00050308	0.290090954
0	0.500307824	0.832633988	0.290061401
0	0.833333333	0.333333333	0.000000000
0	0.666666666	0.50000000	0.000000000
0	0.666837611	0.333077919	0.094051492
0	0.833442254	0.499998393	0.092752720
0	0.833604746	0.333043367	0.202006634
0	0.666266006	0.499880452	0.201606036
0	0.666523287	0.666603461	0.290525141
0	0.832228717	0.499595484	0.289596302
0	0.833333333	0.666666666	0.000000000
0	0.666666666	0.833333333	0.000000000
0	0.666672926	0.666669615	0.094464297
0	0.833343584	0.833307118	0.092994785
0	0.833718502	0.666759917	0.202057767
0	0.666463969	0.833333508	0.201606033
0	0.665923988	-9.74066E-05	0.290077817
0	0.832465096	0.833960792	0.289886444