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1 Interpolation

This section has been published as Supporting Information before,! but we include it here
for completeness and for the reader’s convenience.

Sparse interpolation is a linear combination of full-tensor interpolation. Therefore, we
begin by defining the specific one-dimensional rules, followed by the full-tensor interpolation

operators.

1.1 One dimension: trigonometric interpolation

In one dimension, we have m(l) = 3! nodes at each level [ > 0.52 The trigonometric interpo-
lation nodes are

The basis functions are more complicated. Trigonometric interpolation with 2n+1 points can
resolve all modes up to mode n, so each frequency will have two associated nodes. Therefore,

we begin by defining

_ 7/2, j even
o(j) = ,
—(1+3)/2, jodd
¢j(x) = exp(2mi- o(j) - ),

where i = —1 (in Roman font). The one-dimensional interpolant of f : [0,1] — R is

m(l)
UTfl(x) = 3 Re(c) ¢;(x)
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where the interpolation coefficients cé- are

d=—7 > fla)di(a),  1<j<m(),

which is a normalized discrete Fourier transform. Here, ¢ denotes the complex conjugate
of ¢;. Trigonometric interpolation converges uniformly as [ — oo as long as the target
function f is periodic and uniformly continuous, and the convergence rate is faster as f gets

smoother. 52

1.2 One dimension: Clenshaw—Curtis

The number of Clenshaw-Curtis points on level [ > 0 is5354

1, =0
m(l) =
2041, 1>0
and the points themselves are given by
0, =0

—cos(%w), 1<j<m(), 1>0

The basis functions are Lagrange polynomials, defined as

m(l)

I l’—iL'j .

(1) = , =1,...,m(l

dw =TI =2 m(l)
J=1,j#i

which have the convenient property that ¢;(x;) = d;;. With that property, it readily follows

that the Clenshaw—Curtis interpolant of f: [—1,1] - R is

m(l)

U= ddi)  d=rh).

J=1
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Polynomial interpolation is exact for all polynomials of degree up to m(l) — 1. Clenshaw—

Curtis interpolation converges uniformly as [ — oo as long as f is uniformly continuous, and

the convergence rate gets faster as f becomes smoother. 525

1.3 Full tensor

Let 4 € Nd be a multi-index drawn from the natural numbers including zero. For full-tensor
interpolation, we have m(i;) points in dimension k, and we take the grid as the tensor

product of one-dimensional grids at level iy:

d
{25} = =i}
k=1
which gives a lattice structure as the grid. Let
z) =[] éilzr), JEN xR,
k=1

where ¢;, are the one-dimensional basis functions of your interpolation rule. The full-tensor

interpolant of f(x) is

m(i1) m(iq)
=) ) didi (1)
s1=1 Ja=1

where the full-tensor interpolation coefficients c;- are

m(i1) m(iq)
c; = Z Z flx (trigonometric)

Hk;  m(ik) pi=1  pg=1

c; = f(x%) (polynomial)

To express U*[f] in adjoint form, we note that a linear operator £ gets applied to the data
f(x%) to produce c. For polynomial interpolation, £ is the identity operator; for trigono-

metric interpolation, £ is the discrete Fourier transform. Thus, for polynomial interpolation,
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the adjoint form is identical to the form already presented. For trigonometric interpolation,

however, we get

U'Lf] = (c.d(@)) = (Lf ¢(x)) = (. L ¢(x)) = (f Lo())

where the last equality is justified since we take only the real part of the interpolant. So the
adjoint functions ¢%(x) are a discrete Fourier transform of the basis functions ¢%(x), and we

get

1.4 Sparse interpolation

We first define the following relation between multi-indices:

The most general form of a sparse interpolation operator is
Go =) t;U’
i€O
where U® is defined in Equation (1), © is a lower set,! and
Y ty=1, Vico.
i<j, 3€O©

To find O, we first begin with a desired exactness space A(L), which is also lower set.
The set A(L) contains the frequencies/degrees for which Gg should be exact. In this paper,
we have taken

A*(L)={ieN | a-i< L} (2)

LA set of multi-indices S C N¢ is lower if and only if, for each & € S, we have {y € Nd | y <z} C S.
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where « is the anisotropy vector. For the mixed-basis grid, we used a = (1,2,2) on the

trigonometric part and o = 1 on the polynomial part.? After defining A(L), we construct

the optimal © as5?5

Oupi(L) = {i € NI | m(i — 1) € A(L)} (polynomial)

Oupt(L) ={i € NI | (m(i — 1) +1)/2 € A(L)} (trigonometric)

where (m(2)), = m(ix).

By defining the set of all sparse grid indices
O, = {7 e Nj | 1 <j < m(i)}
ico
and using either the internal or adjoint form of U%, we can also write Gg[f] as
Golf] = > wios(@) = >, flaj)is()
JjE€EO, JEOM,

where

w; = Z t; 1/;;(33): Z ti k().

€0, 1€0,
j<ml(i) g<mii)

2We did not conjure up these values a priori; we iteratively arrived at them as a result of refining the
grid (see Section 3 below).
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2 Details of electronic structure calculations

All Sy electronic structure calculations occur in Gaussian 16.We have included two example
input files, corresponding to a linear and nonlinear structure. The difference between the two
is that the modredundant section includes the L keyword for linear structures. For nonlinear
structures, we use A and D instead of L.

All calculations of excitation energies and nonadiabatic coupling vectors occur in Orca
as some of them employ open-shell ground state as a reference, for which the TD-DFT and

CIS implementations in Orca are more suitable.
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2.1 Example 1: linear structure (.S))

hchk=chkfiles/scan_zmat_1.chk

Jmem=32GB

Jnprocshared=16

# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane stability 1

01

N 0.00000000 0.00000000 0.00000000
N 1.21001503 0.00000000 0.00000000
C 1.94413820 1.36087129 0.00000000
C -1.80000000 0.00000000 0.00000000
H 3.01529271 1.16666079 0.00000000
H 1.65967212 1.92152238 -0.89311136
H 1.65967124 1.92152000 0.89311218
H -2.30534096 0.96713099 0.00000000
H -1.92067884 -0.57054140 -0.90903927
H -1.92068356 -0.57054030 0.90903849
--Linkl--

%chk=chkfiles/scan_zmat_1.chk

%mem=32GB

Jnprocshared=16

# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30)
geom=check guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 1

01

- ow
N = =
o= N
= W T
w w o
] T T

--Linkl--

hchk=chkfiles/scan_zmat_1.chk

Jmem=32GB

Jnprocshared=16

# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
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integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 2
01

--Link1l--

%hchk=chkfiles/scan_zmat_1.chk

Jmem=32GB

Jnprocshared=16

# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 2
01

--Linkl--

hchk=chkfiles/scan_zmat_1.chk

Jmem=32GB

Jnprocshared=16

# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 3

01
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2.2 Example 2: nonlinear structure (5))

hchk=chkfiles/scan_zmat_2.chk

Jmem=32GB

Jnprocshared=16

# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane stability 1

01

N 0.00000000 0.00000000 0.00000000
N 1.23874400 0.00000000 0.00000000
C 1.80434700 1.38280600 0.00000000
C 0.00000000 -1.80000000 0.00000000
H 2.89084000 1.30705300 0.00000000
H 1.47283200 1.92607900 -0.88854700
H 1.47283200 1.92607900 0.88854700
H -1.02105000 -2.18591100 0.00000000
H 0.54010800 -2.04428300 -0.90535200
H 0.54010800 -2.04428300 0.90535200
--Linkl--

%chk=chkfiles/scan_zmat_2.chk

%mem=32GB

Jnprocshared=16

# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) geom=check
guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 1

01

O > 090w
N P = =
o i OIS
=N W T
N T W o
] ']

o

--Linkl--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB

Jnprocshared=16
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# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 2
01

--Linkl--

hchk=chkfiles/scan_zmat_2.chk

Jmem=32GB

Jnprocshared=16

# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none

azomethane opt 2
01

--Linkl--

hchk=chkfiles/scan_zmat_2.chk

Jmem=32GB

Jnprocshared=16

# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none

azomethane stability 3

01
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2.3 Example 3: excited states

The Orca input file azo.inp (with stability checks) is shown below:

IB3LYP 6-311g(d) TightSCF

%CIS
HFNacme true
END
%SCF
MaxIter 100
HFType UHF
STABPerform true
END
% TDDFT
NROOTS 10
END

* xyzfile O 1 geomfiles/azo.xyz

The file geomfiles/azo.xyz contains the geometry specified in Cartesian coordinates:

10

azomethane

N 0.00000000 0.00000000 0.00000000
N 1.22915061 0.00000000 0.00000000
C 1.87275627 1.37687217 0.00000000
C -1.61279073 0.01401353 -0.00653607
H 2.62923902 1.39536387 -0.79264170
H 1.13534982 2.18398066 -0.12897983
H 2.39160980 1.47760052 0.95776512
H -1.88615071 0.21731351 1.02800251
H -1.91964069 0.83289353 -0.66933412
H -1.97129227 -0.96664721 -0.33283514
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3 Final refinement

Table S1 shows the parameters used in the mixed-basis grid after all refinement was com-
pleted. Table S2 contains the stationary points and energies (relative to the trans- minimum)
for the final mixed-basis grid. These stationary points were calculated on the unrestricted
So PES. The energy relative to the global minimum is within ~5% or 1 kcal/mol of the

Gaussian-optimized value.

Furthermore, since the predicted mixed-basis energies are all

smaller than the Gaussian-optimized values, the relative barriers remain comparable.

Table S2: Locations of minima and transition states, as well as energy barriers relative to

Table S1: Specification of final grids.

Trig grid | Polynomial grid
d=3 d=2
L=5 L=28

a=(1,2,2) a=1

the trans- minimum on the unrestricted Sy surface.

Structure Surrogate Optimized g AE (kcal/mol)

| Gaussian | [180.00,122.20,122.20,1.46, 113.00] 0
mixed [—179.71,121.91,121.84, 1.46, 116.06] 0

i e | Gaussian | [0.00,~119.38,—60.33,1.48,120.21] 10.48

mixed [0.95, —118.43, —50.84, 1.49, 124.18] 9.57

Iverdion Tg | Gaussian | [~180.00,—97.52,121.18,1.39, 180.00] 51.02

mixed [—92.16,123.10, 121.72, 1.40, 180.00] 50.12

Torsion TS Gaussian [—89.50, 145.77,55.27,1.47,117.79] 45.71

mixed [—87.46,138.92,141.04, 1.46, 118.78] 43.16
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4 Animations

A suite of animations is in a ZIP archive as part of the ESI. Each of these animations used
the mixed interpolation basis with the final level of refinement (7215 nodes).

Five of these animations, named XQ_1i.mp4, where i ranges from 1 to 5, are animations of
each geometry component at a slice chosen from a uniform distribution. Each file animates a
different design variable over its domain while holding the other slice components constant.
The purpose of these five animations is to demonstrate visually the Cartesian geometry
change as a function of the design variables, particularly when the N*-N*-C* bond angle
is larger than 180°. They also demonstrate the smoothly varying nature of X (q) during
rotation, dissociation, and inversion.

The file nearly_linear.mp4 motivates our definition of ¢, at nearly linear geometries.
If we did not adjust for the changing dihedral in our definition of ¢,, we would end up with
a linear structure where the main dihedral rotation still produces changes in the geometry.
Our definition of ¢y prevents multivalued geometries in the limit g5 — 180 by keeping the
methyl group properly oriented.

Lastly, in FSSH.mp4, we animate one surface hopping trajectory. Hops occur at t = 150
fs (S — Sp), t = 151 fs (Sy — S1), t = 155 fs (S1 — Sp), t = 410 fs (Sy — S1), and
t =445 fs (S; — Sp). The purpose of this animation is to show the reconstruction of the
geometry as part of the MD run itself, rather than as isolated investigations of X (q). It
also demonstrates relaxation to ¢; = %90 on 57, followed by relaxation to a minimum on Sy

after hopping.
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