Supporting Information:

Reduced-dimensional surface hopping with offline-online computations

Zachary Morrow, ${ }^{\dagger}$ Hyuk-Yong Kwon, ${ }^{\ddagger}$ C. T. Kelley, ${ }^{*, \dagger}$ and Elena Jakubikova*, \ddagger
\dagger Department of Mathematics, North Carolina State University, Raleigh, NC 27695
\ddagger Department of Chemistry, North Carolina State University, Raleigh, NC 27695

E-mail: tim_kelley@ncsu.edu; ejakubi@ncsu.edu

Contents

1 Interpolation S-3
1.1 One dimension: trigonometric interpolation S-3
1.2 One dimension: Clenshaw-Curtis S-4
1.3 Full tensor S-5
1.4 Sparse interpolation S-6
2 Details of electronic structure calculations S-8
2.1 Example 1: linear structure $\left(S_{0}\right)$ S-9
2.2 Example 2: nonlinear structure $\left(S_{0}\right)$ S-11
2.3 Example 3: excited states S-13
3 Final refinement S-14
4 Animations S-15
References S-16

1 Interpolation

This section has been published as Supporting Information before, ${ }^{\text {S1 }}$ but we include it here for completeness and for the reader's convenience.

Sparse interpolation is a linear combination of full-tensor interpolation. Therefore, we begin by defining the specific one-dimensional rules, followed by the full-tensor interpolation operators.

1.1 One dimension: trigonometric interpolation

In one dimension, we have $m(l)=3^{l}$ nodes at each level $l \geq 0 .{ }^{\text {S2 }}$ The trigonometric interpolation nodes are

$$
x_{j}^{l}=\frac{j-1}{m(l)}, \quad 1 \leq j \leq m(l), \quad l \geq 0 .
$$

The basis functions are more complicated. Trigonometric interpolation with $2 n+1$ points can resolve all modes up to mode n, so each frequency will have two associated nodes. Therefore, we begin by defining

$$
\begin{aligned}
\sigma(j) & = \begin{cases}j / 2, & j \text { even } \\
-(1+j) / 2, & j \text { odd }\end{cases} \\
\phi_{j}(x) & =\exp (2 \pi \mathrm{i} \cdot \sigma(j) \cdot x),
\end{aligned}
$$

where $\mathrm{i}^{2}=-1$ (in Roman font). The one-dimensional interpolant of $f:[0,1] \rightarrow \mathbb{R}$ is

$$
\mathcal{U}^{l}[f](x)=\sum_{j=1}^{m(l)} \operatorname{Re}\left(c_{j}^{l} \phi_{j}(x)\right)
$$

where the interpolation coefficients c_{j}^{l} are

$$
c_{j}^{l}=\frac{1}{m(l)} \sum_{p=1}^{m(l)} f\left(x_{p}^{l}\right) \phi_{j}^{*}\left(x_{p}^{l}\right), \quad 1 \leq j \leq m(l)
$$

which is a normalized discrete Fourier transform. Here, ϕ_{j}^{*} denotes the complex conjugate of ϕ_{j}. Trigonometric interpolation converges uniformly as $l \rightarrow \infty$ as long as the target function f is periodic and uniformly continuous, and the convergence rate is faster as f gets smoother. ${ }^{\text {S2 }}$

1.2 One dimension: Clenshaw-Curtis

The number of Clenshaw-Curtis points on level $l \geq 0$ is ${ }^{\mathrm{S} 3, \mathrm{~S} 4}$

$$
m(l)= \begin{cases}1, & l=0 \\ 2^{l}+1, & l>0\end{cases}
$$

and the points themselves are given by

$$
x_{j}^{l}=\left\{\begin{array}{ll}
0, & l=0 \\
-\cos \left(\frac{j-1}{m(l)-1} \pi\right), & 1 \leq j \leq m(l), l>0
\end{array} .\right.
$$

The basis functions are Lagrange polynomials, defined as

$$
\phi_{i}^{l}(x)=\prod_{j=1, j \neq i}^{m(l)} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad i=1, \ldots, m(l)
$$

which have the convenient property that $\phi_{i}\left(x_{j}\right)=\delta_{i j}$. With that property, it readily follows that the Clenshaw-Curtis interpolant of $f:[-1,1] \rightarrow \mathbb{R}$ is

$$
\mathcal{U}^{l}[f]=\sum_{j=1}^{m(l)} c_{j}^{l} \phi_{j}^{l}(x) \quad c_{j}^{l}=f\left(x_{j}^{l}\right) .
$$

Polynomial interpolation is exact for all polynomials of degree up to $m(l)-1$. ClenshawCurtis interpolation converges uniformly as $l \rightarrow \infty$ as long as f is uniformly continuous, and the convergence rate gets faster as f becomes smoother. ${ }^{\mathrm{S} 2, \mathrm{~S} 5}$

1.3 Full tensor

Let $\boldsymbol{i} \in \mathbb{N}_{0}^{d}$ be a multi-index drawn from the natural numbers including zero. For full-tensor interpolation, we have $m\left(i_{k}\right)$ points in dimension k, and we take the grid as the tensor product of one-dimensional grids at level i_{k} :

$$
\left\{\boldsymbol{x}_{\boldsymbol{j}}^{i}\right\}=\bigotimes_{k=1}^{d}\left\{x_{j_{k}}^{i_{k}}\right\},
$$

which gives a lattice structure as the grid. Let

$$
\phi_{\boldsymbol{j}}(\boldsymbol{x})=\prod_{k=1}^{d} \phi_{j_{k}}\left(x_{k}\right), \quad \boldsymbol{j} \in \mathbb{N}_{0}^{d}, \boldsymbol{x} \in \mathbb{R}^{d},
$$

where $\phi_{j_{k}}$ are the one-dimensional basis functions of your interpolation rule. The full-tensor interpolant of $f(\boldsymbol{x})$ is

$$
\begin{equation*}
\mathcal{U}^{i}[f](\boldsymbol{x})=\sum_{j_{1}=1}^{m\left(i_{1}\right)} \cdots \sum_{j_{d}=1}^{m\left(i_{d}\right)} c_{\boldsymbol{j}}^{i} \phi_{\boldsymbol{j}}^{i}(\boldsymbol{x}), \tag{1}
\end{equation*}
$$

where the full-tensor interpolation coefficients c_{j}^{i} are

$$
\begin{aligned}
c_{\boldsymbol{j}}^{i} & =\frac{1}{\prod_{k=1}^{d} m\left(i_{k}\right)} \sum_{p_{1}=1}^{m\left(i_{1}\right)} \cdots \sum_{p_{d}=1}^{m\left(i_{d}\right)} f\left(\boldsymbol{x}_{\boldsymbol{p}}^{\boldsymbol{i}}\right) \phi_{\boldsymbol{j}}^{*}\left(\boldsymbol{x}_{\boldsymbol{p}}^{\boldsymbol{i}}\right) \quad \text { (trigonometric) } \\
c_{\boldsymbol{j}}^{i} & =f\left(\boldsymbol{x}_{\boldsymbol{j}}^{\boldsymbol{i}}\right)
\end{aligned}
$$

To express $\mathcal{U}^{i}[f]$ in adjoint form, we note that a linear operator \mathcal{L} gets applied to the data $f\left(\boldsymbol{x}_{\boldsymbol{j}}^{\boldsymbol{i}}\right)$ to produce $c_{\boldsymbol{j}}^{\boldsymbol{i}}$. For polynomial interpolation, \mathcal{L} is the identity operator; for trigonometric interpolation, \mathcal{L} is the discrete Fourier transform. Thus, for polynomial interpolation,
the adjoint form is identical to the form already presented. For trigonometric interpolation, however, we get

$$
\mathcal{U}^{i}[f]=\langle\boldsymbol{c}, \boldsymbol{\phi}(\boldsymbol{x})\rangle=\langle\mathcal{L} \boldsymbol{f}, \boldsymbol{\phi}(\boldsymbol{x})\rangle=\left\langle\boldsymbol{f}, \mathcal{L}^{*} \boldsymbol{\phi}(\boldsymbol{x})\right\rangle=\langle\boldsymbol{f}, \mathcal{L} \boldsymbol{\phi}(\boldsymbol{x})\rangle
$$

where the last equality is justified since we take only the real part of the interpolant. So the adjoint functions $\psi_{\boldsymbol{j}}^{\boldsymbol{i}}(\boldsymbol{x})$ are a discrete Fourier transform of the basis functions $\phi_{\boldsymbol{j}}^{\boldsymbol{i}}(\boldsymbol{x})$, and we get

$$
\mathcal{U}^{i}[f](\boldsymbol{x})=\sum_{j_{1}=1}^{m\left(i_{1}\right)} \cdots \sum_{j_{d}=1}^{m\left(i_{d}\right)} f\left(\boldsymbol{x}_{\boldsymbol{j}}^{\boldsymbol{i}}\right) \psi_{\boldsymbol{j}}^{\boldsymbol{i}}(\boldsymbol{x})
$$

1.4 Sparse interpolation

We first define the following relation between multi-indices:

$$
\boldsymbol{i} \leq \boldsymbol{j} \quad \Longleftrightarrow \quad i_{k} \leq j_{k} \quad \forall 1 \leq k \leq d
$$

The most general form of a sparse interpolation operator is

$$
G_{\Theta}=\sum_{i \in \Theta} t_{i} \mathcal{U}^{i}
$$

where \mathcal{U}^{i} is defined in Equation (1), Θ is a lower set, ${ }^{1}$ and

$$
\sum_{i \leq \boldsymbol{j}, \boldsymbol{j} \in \Theta} t_{\boldsymbol{j}}=1, \quad \forall \boldsymbol{i} \in \Theta
$$

To find Θ, we first begin with a desired exactness space $\Lambda(L)$, which is also lower set. The set $\Lambda(L)$ contains the frequencies/degrees for which G_{Θ} should be exact. In this paper, we have taken

$$
\begin{equation*}
\Lambda^{\boldsymbol{\alpha}}(L)=\left\{\boldsymbol{i} \in \mathbb{N}_{0}^{d} \mid \boldsymbol{\alpha} \cdot \boldsymbol{i} \leq L\right\} \tag{2}
\end{equation*}
$$

[^0]where $\boldsymbol{\alpha}$ is the anisotropy vector. For the mixed-basis grid, we used $\boldsymbol{\alpha}=(1,2,2)$ on the trigonometric part and $\boldsymbol{\alpha}=\mathbf{1}$ on the polynomial part. ${ }^{2}$ After defining $\Lambda(L)$, we construct the optimal Θ as ${ }^{\mathrm{S} 2, \mathrm{~S} 4}$
\[

$$
\begin{array}{ll}
\Theta_{\text {opt }}(L) & =\left\{\boldsymbol{i} \in \mathbb{N}_{0}^{d} \mid \boldsymbol{m}(\boldsymbol{i}-\mathbf{1}) \in \Lambda(L)\right\} \\
\Theta_{\text {opt }}(L)=\left\{\boldsymbol{i} \in \mathbb{N}_{0}^{d} \mid(\boldsymbol{m}(\boldsymbol{i}-\mathbf{1})+\mathbf{1}) / 2 \in \Lambda(L)\right\} & \text { (trigonometric) }
\end{array}
$$
\]

where $(\boldsymbol{m}(\boldsymbol{i}))_{k}=m\left(i_{k}\right)$.
By defining the set of all sparse grid indices

$$
\Theta_{m}=\bigcup_{\boldsymbol{i} \in \Theta}\left\{\boldsymbol{j} \in \mathbb{N}_{0}^{d} \mid \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{m}(\boldsymbol{i})\right\}
$$

and using either the internal or adjoint form of \mathcal{U}^{i}, we can also write $G_{\Theta}[f]$ as

$$
G_{\Theta}[f]=\sum_{\boldsymbol{j} \in \Theta_{m}} w_{\boldsymbol{j}} \phi_{\boldsymbol{j}}(\boldsymbol{x})=\sum_{\boldsymbol{j} \in \Theta_{m}} f\left(\boldsymbol{x}_{\boldsymbol{j}}\right) \tilde{\psi}_{\boldsymbol{j}}(\boldsymbol{x})
$$

where

$$
w_{\boldsymbol{j}}=\sum_{\substack{i \in \Theta, \boldsymbol{j} \leq \boldsymbol{m}(i)}} t_{\boldsymbol{i}} c_{\boldsymbol{j}}^{i}, \quad \tilde{\psi}_{\boldsymbol{j}}^{i}(\boldsymbol{x})=\sum_{\substack{i \in \Theta, \boldsymbol{j} \leq \boldsymbol{m}(i)}} t_{\boldsymbol{i}} \psi_{\boldsymbol{j}}^{i}(\boldsymbol{x})
$$

[^1]
2 Details of electronic structure calculations

All S_{0} electronic structure calculations occur in Gaussian 16. We have included two example input files, corresponding to a linear and nonlinear structure. The difference between the two is that the modredundant section includes the L keyword for linear structures. For nonlinear structures, we use A and D instead of L.

All calculations of excitation energies and nonadiabatic coupling vectors occur in Orca as some of them employ open-shell ground state as a reference, for which the TD-DFT and CIS implementations in Orca are more suitable.

2.1 Example 1: linear structure $\left(S_{0}\right)$

```
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane stability 1
O 
    N 0.00000000 0.00000000 0.00000000
    N 1.21001503 0.00000000 0.00000000
    C 1.94413820 1.36087129 0.00000000
    C -1.80000000 0.00000000 0.00000000
    H 3.01529271 1.16666079 0.00000000
    H 1.65967212 1.92152238 -0.89311136
    H 1.65967124 1.92152000 0.89311218
    H -2.30534096 0.96713099 0.00000000
    H -1.92067884 -0.57054140 -0.90903927
    H -1.92068356 -0.57054030 0.90903849
--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30)
geom=check guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane opt 1
O 1
B 14 F
D 12 35 F
L 2 143 F
D 8 4 1 3 F
--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
```

```
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none
azomethane stability 2
0 1
--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# opt=(newton,tight,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane opt 2
O 1
--Link1--
%chk=chkfiles/scan_zmat_1.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none
azomethane stability 3
O 1
```


2.2 Example 2: nonlinear structure (S_{0})

```
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# stable=opt b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane stability 1
O 
    N 0.00000000 0.00000000 0.00000000
    N 1.23874400 0.00000000 0.00000000
    C 1.80434700 1.38280600 0.00000000
    C 0.00000000 -1.80000000 0.00000000
    H 2.89084000 1.30705300 0.00000000
    H 1.47283200 1.92607900 -0.88854700
    H 1.47283200 1.92607900 0.88854700
    H -1.02105000 -2.18591100 0.00000000
    H 0.54010800 -2.04428300 -0.90535200
    H 0.54010800 -2.04428300 0.90535200
--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) geom=check
guess=read b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane opt 1
01
B 14 F
D1235 F
D4123 F
A 2 1 4 F
D 8412 F
--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
```

```
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none
azomethane stability 2
01
--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# opt=(newton,modredundant,maxstep=1,calcall,maxcycles=30) freq
guess=read geom=check b3lyp/6-311g(d) pop=always integral=grid=ultrafine
scf=(xqc,vtl,maxconventionalcycles=512) symmetry=none
azomethane opt 2
01
--Link1--
%chk=chkfiles/scan_zmat_2.chk
%mem=32GB
%nprocshared=16
# stable=opt geom=check guess=read b3lyp/6-311g(d) pop=always
integral=grid=ultrafine scf=(xqc,vtl,maxconventionalcycles=512)
symmetry=none
azomethane stability 3
O1
```


2.3 Example 3: excited states

The Orca input file azo.inp (with stability checks) is shown below:

```
!B3LYP 6-311g(d) TightSCF
%CIS
    HFNacme true
END
%SCF
    MaxIter 100
    HFType UHF
    STABPerform true
END
%TDDFT
    NROOTS 10
END
* xyzfile 0 1 geomfiles/azo.xyz
```

The file geomfiles/azo.xyz contains the geometry specified in Cartesian coordinates:

|
 azomethane
 N 0.00000000 0.00000000 0.00000000
 N 1.22915061 0.00000000 0.00000000
 C 1.87275627 1.37687217 0.0000000
 C -1.61279073 0.01401353 -0.00653607
 H 2.62923902 1.39536387 -0.79264170
 H 1.13534982 2.18398066 -0.12897983
 H 2.39160980 1.47760052 0.95776512
 H -1.88615071 0.21731351 1.02800251
 H -1.91964069 0.83289353 -0.66933412
 H -1.97129227 -0.96664721 -0.33283514 |
| :--- | ---: | ---: | ---: |

3 Final refinement

Table S1 shows the parameters used in the mixed-basis grid after all refinement was completed. Table S2 contains the stationary points and energies (relative to the trans-minimum) for the final mixed-basis grid. These stationary points were calculated on the unrestricted S_{0} PES. The energy relative to the global minimum is within $\sim 5 \%$ or $1 \mathrm{kcal} / \mathrm{mol}$ of the Gaussian-optimized value. Furthermore, since the predicted mixed-basis energies are all smaller than the Gaussian-optimized values, the relative barriers remain comparable.

Table S1: Specification of final grids.

Trig grid	Polynomial grid
$d=3$	$d=2$
$L=5$	$L=8$
$\boldsymbol{\alpha}=(1,2,2)$	$\boldsymbol{\alpha}=\mathbf{1}$

Table S2: Locations of minima and transition states, as well as energy barriers relative to the trans- minimum on the unrestricted S_{0} surface.

Structure	Surrogate	Optimized \boldsymbol{q}	$\Delta \mathrm{E}(\mathrm{kcal} / \mathrm{mol})$
trans- minimum	Gaussian mixed	$[180.00,122.20,122.20,1.46,113.00]$	0
	$[-179.71,121.91,121.84,1.46,116.06]$	0	
cis- minimum	Gaussian		
	mixed	$[0.00,-119.38,-60.33,1.48,120.21]$	10.48
Inversion TS	Gaussian	$[-180.00,-97.43,-50.84,1.49,124.18]$	9.57
	mixed	$[-92.16,123.10,121.72,1.39,180.00]$	51.02
	Gaussian	$[-89.50,145.77,55.27,1.47,117.00]$	50.12
	mixed	$[-87.46,138.92,141.04,1.46,118.78]$	45.71

4 Animations

A suite of animations is in a ZIP archive as part of the ESI. Each of these animations used the mixed interpolation basis with the final level of refinement (7215 nodes).

Five of these animations, named XQ_i.mp4, where i ranges from 1 to 5 , are animations of each geometry component at a slice chosen from a uniform distribution. Each file animates a different design variable over its domain while holding the other slice components constant. The purpose of these five animations is to demonstrate visually the Cartesian geometry change as a function of the design variables, particularly when the $\mathrm{N}^{2}-\mathrm{N}^{1}-\mathrm{C}^{4}$ bond angle is larger than 180°. They also demonstrate the smoothly varying nature of $\boldsymbol{X}(\boldsymbol{q})$ during rotation, dissociation, and inversion.

The file nearly_linear.mp4 motivates our definition of q_{2} at nearly linear geometries. If we did not adjust for the changing dihedral in our definition of q_{2}, we would end up with a linear structure where the main dihedral rotation still produces changes in the geometry. Our definition of q_{2} prevents multivalued geometries in the limit $q_{5} \rightarrow 180$ by keeping the methyl group properly oriented.

Lastly, in FSSH.mp4, we animate one surface hopping trajectory. Hops occur at $t=150$ fs $\left(S_{1} \rightarrow S_{0}\right), t=151$ fs $\left(S_{0} \rightarrow S_{1}\right), t=155 \mathrm{fs}\left(S_{1} \rightarrow S_{0}\right), t=410 \mathrm{fs}\left(S_{0} \rightarrow S_{1}\right)$, and $t=445 \mathrm{fs}\left(S_{1} \rightarrow S_{0}\right)$. The purpose of this animation is to show the reconstruction of the geometry as part of the MD run itself, rather than as isolated investigations of $\boldsymbol{X}(\boldsymbol{q})$. It also demonstrates relaxation to $q_{1} \approx \pm 90$ on S_{1}, followed by relaxation to a minimum on S_{0} after hopping.

References

(S1) Morrow, Z.; Kwon, H.-Y.; Kelley, C. T.; Jakubikova, E. Efficient Approximation of Potential Energy Surfaces with Mixed-Basis Interpolation. Submitted 2021, in review.
(S2) Morrow, Z.; Stoyanov, M. A Method for Dimensionally Adaptive Sparse Trigonometric Interpolation of Periodic Functions. SIAM J. Sci. Comput. 2020, 42, A2436-A2460.
(S3) Clenshaw, C. W.; Curtis, A. R. A Method for Numerical Integration on an Automatic Computer. Numer. Math. 1960, 2, 197-205.
(S4) Stoyanov, M. K.; Webster, C. G. A Dynamically Adaptive Sparse Grids Method for Quasi-Optimal Interpolation of Multidimensional Functions. Comput. Math. A 2016, 71, 2449-2465.
(S5) Gautschi, W. Numerical Analysis, 2nd ed.; Birkhäuser Basel, 2012.

[^0]: ${ }^{1}$ A set of multi-indices $S \subset \mathbb{N}_{0}^{d}$ is lower if and only if, for each $\boldsymbol{x} \in S$, we have $\left\{\boldsymbol{y} \in \mathbb{N}_{0}^{d} \mid \boldsymbol{y} \leq \boldsymbol{x}\right\} \subset S$.

[^1]: ${ }^{2}$ We did not conjure up these values a priori; we iteratively arrived at them as a result of refining the grid (see Section 3 below).

