Supporting Information

Experimental and Computational Details

In order to select an appropriate density functional for the $[\text{ReCl}_{\lambda}]^{+}/\text{CH}_{4}$ reaction system, a benchmark for the bond dissociation energy (BDE) of $[\text{Re-Cl}]^{+}$, $[\text{CIRe-Cl}]^{+}$, $[\text{Cl}_{2}\text{Re-Cl}]^{+}$, $[\text{Re-H}]^{+}$, $[\text{Re-CH}_{2}]^{+}$, $[\text{Re-CH}_{3}]^{+}$ was carried out. The bond energy of $[\text{M-L}]^{+}$ was calculated with the formulation of BDE($[\text{M-L}]^{+}$) = E(M⁺) + E(L) – E($[\text{M-L}]^{+}$), where E(X) is composed of the correction to the enthalpy and the single-point energy (SPE). We first optimized the structures of M⁺, L_{\sim} [M-L]⁺ at B3LYP¹. ²/cc-PVDZ(pp)³⁻⁶ level and calculated the zero-point vibrational energy (ZPVE) and thermal corrections to the enthalpy. The ZPVE and thermal contribution to enthalpy at 298.15K were corrected with the scaling factors of 0.9689 and 0.9784, respectively, to get the thermal corrections to enthalpy.⁷ Then, the SPEs were calculated at CCSD(T)^{8,9}/CBS(aug-cc-pV[T:Q]Z(pp))^{10, 11} level of theory using B3LYP/cc-PVDZ(pp). The BDE([M-L]⁺) calculated with the thermal correction to enthalpy gained by B3LYP and SPE gained by CCSD(T) acts as the criterion BDE([M-L]⁺)⁰.

Next, the SPE calculations of M^+ , L, $[M-L]^+$ were performed by using the methods of B3LYP^{1, 2}、B1LYP¹²、B2GP-PLYP¹³、B3P86¹⁴⁻¹⁶、B3PW91^{16, 17}、 ¹⁷、G96LYP¹⁹、CAM-B3LYP²⁰、HCTH93²¹、HISS^{22,} 23 B98¹⁸、BPW91^{15,} HSE03(OHSE2PBE)²⁴⁻²⁶、HSE06(HSEh1PBE)²⁴⁻²⁶、LC-BLYP²⁷、LC-wpbe²⁸、 M06²⁹ M08-HX³⁰ M11³¹ mPW1PLYP^{32, 33} mPW1PBE^{32, 34} mPW2PLYP³⁵ mPW3PBE^{32, 34}、mPWPBE^{32, 34}、mPWPW91^{17, 32}、OHSE1PBE^{25, 26, 36-40}、OLYP^{33,} ⁴¹、OPBE³⁴、PBE0⁴²、PBEH1PBE⁴³、PKZB⁴⁴、PW91⁴⁵、revTPSS⁴⁶、SOGGA11- X^{47} TPSSh⁴⁸ VSXC⁴⁹ X3LYP⁵⁰ ω B97⁵¹ ω B97X⁵¹ ω B97X-D⁵² MN15⁵³ MN15L⁵⁴、mPW1PW91¹²、O3LYP⁵⁵、PBE0-DH⁵⁶、Mpw-QIDH⁵⁷ with the cc-PVDZ(pp) basis set and the ECP 60 pseudopotential⁵⁸ for Re atom. Besides, the methods of B2GP-PLYP, B3PW91, CAM-B3LYP, LC-ωpbe and PBE0 are performed with DFT-D3 dispersion correction.^{59, 60} Once again, getting the energy of each elementary by combining the thermal correction to enthalpy gained by B3LYP with SPE gained by each method, the BDE($[M-L]^+$) of these six bonds were obtained. Taking BDE($[M-L]^+$)⁰ as the benchmark, the average errors MSE and variances RMSE of six bonds' BDE for all computational methods are shown in Figure S1. Besides, Figure S2 demonstrates the normal distribution of BDE errors calculated by 15 methods with the small average errors.

Above the analysis, considering the accuracy and precision of the computational method, PBE0-D3(BJ) is employed to optimize the structures. Natural bond orbital (NBO)⁶¹⁻⁶⁶ and quasi-restricted orbital (QRO)^{67, 68} calculations were performed to obtain further information and the NBOs diagrams were painted by using Multifwn⁶⁹ and VMD⁷⁰ programs, respectively. The minimum energy crossing points (MECPs) were identified by means of the algorithm developed by Harvey et al.2 in ORCA 4.⁷¹

Deformation energy (ΔE_{def}) required for distorting the reactants to their geometries in TSs, is calculated as $\Delta E_{def} = E(CH_4 + [ReCl_x]^+ \text{ at TS geometry}) - E(EC)$; ΔE_{def} and the respective reaction barrier (ΔE^{\ddagger}) were calculated at the CCSD(T)/BSII level. And the NPA charge of Re in the clusters are calculated at PBE0/def2-TZVP⁷² level.

Different components of the total interaction energy of the ground state EC structures in [ReCl_x]⁺ (x = 1 - 3)/CH₄ and [ReCl₂L]⁺ (L = F, Cl, Br)/CH₄ systems are calculated at the PBE0-D3(BJ)/def2-TZVP level of theory by using GKS-EDA⁷³ method in GAMESS package and the input files for GAMESS are produced by MOKIT⁷⁴. The ECP 60 pseudopotential for Re atom is modified to cut off the angular momentum, in which the pseudopotential only includes the definition of the part \geq g, s, d, f and the part \geq g is not affected by the pseudopotential. The total interaction energy (ΔE^{tot}) is decomposed to electrostatic energy (ΔE^{ele}), exchange energy (ΔE^{ex}), repulsion energy (ΔE^{rep}), polarization energy (ΔE^{corr}), and Pauli repulsion energy (ΔE^{pauli}) is defined as the sum of exchange energy and repulsion energy.

Figure S1. The average errors MSE and variances RMSE of BDE([Re–Cl]⁺), BDE ([ClRe–Cl]⁺), BDE ([Cl₂Re–Cl]⁺), BDE ([Re–H]⁺), BDE ([Re–CH₂]⁺), BDE ([Re–CH₃]⁺) for each computational method

Figure S2. The normal distribution of BDE errors calculated by the methods of mPW1PW91、PW6B95、VSXC、mPW2PLYP、mPW1PBE、B3PW91-D3(BJ)、MN15L、B2GP-PLYP-D3(BJ)、PW3PBE、SOGGA11-X、PBEH1PBE、HSE03(OHSE2PBE)、HSE06(HSEh1PBE)、OHSE1PBE、PBE0-D3(BJ).

Figure S3. PES and selected structural information for the reaction of a) ⁶[ReCl]⁺, b) ⁴[ReCl]⁺ and ²[ReCl]⁺ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond

lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S4. Reaction pathway B and C and selected structural information for the reaction of 2 [CIReHCH]⁺ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S5. PES and selected structural information for the reaction of ⁴[CIReCH₂]⁺ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S6. PES and selected structural information for the reaction of a) ${}^{5}[\text{ReCl}_{2}]^{+}$, b) ${}^{3}[\text{ReCl}_{2}]^{+}$ and ${}^{1}[\text{ReCl}_{2}]^{+}$ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol

and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S7. PES and selected structural information for the reaction of a) 3 [ReCl₂CH₂]⁺ and b) 1 [ReCl₂CH₂]⁺ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S8. PES and selected structural information for the reaction of $[ReCl_3]^+$ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

TS	4TS1/2	² TS5/6	² TS5/8	MECP3	¹ TS12/13	² TS16/17
structure	1.39 2.05 1.71 2.18	2.17 	2.15- 1.73	2.36	2.22 1.65	2.20- 1.63
$ ho_{Me}$	-0.01	0.02	0.08	-0.04	-	-0.01
Q _{Me}	0.03	0.02	0.04	0.00	0.08	0.11
Q _H	0.20	0.31	0.24	0.25	0.27	0.27
Q _c	0.77	0.68	0.72	0.65	0.65	0.62
Q _{CT}	0.23	0.32	0.28	0.35	0.35	0.38
ΔE_{def}	371.2	325.6	367.4	211.5	254.9	279.3
ΔE^{\ddagger}	98.7	45.5	65.1	61.5	35.8	37.3

Figure S9. Schematic representations of the TSs together with NPA charges (Q) and spin densities (ρ) on the methyl group (Me), the charge on the transfer–hydrogen (H), cluster (Q_c), the amount of charge transferred (Q_{CT}) from methane to the cluster ion and the deformation energies (KJ/mol) of the reactants in the TSs (ΔE_{def}), the corresponding barriers (ΔE^{\ddagger}).

Table S1. Energy gap (eV) between the electron–donation orbital of methane and the electron-acception orbital of the cluster ($\Delta E_{DO(methane)\rightarrow AO(cluster)}$) for different systems.

System	$\Delta E_{\text{DO(methane)} \rightarrow \text{AO(cluster)}}$
⁶ [ReCl]⁺/CH₄	4.8
⁴ [ReCl] ⁺ /CH ₄	1.4
⁵ [ReCl ₂] ⁺ /CH ₄	0.8
³ [ReCl ₂] ⁺ /CH ₄	0.6
⁴ [ReCl ₃] ⁺ /CH ₄	5.7
² [ReCl ₃] ⁺ /CH ₄	0.6

Table S2. Decomposition of interaction energies (KJ/mol) in the ground state EC structures for $[\text{ReCl}_x]^+$ (x = 1 - 3)/CH₄ systems as calculated at the PBE0-D3(BJ)/def2-TZVP level of theory.

System	$\Box \Delta E^{ele}$	$\Box \Delta E^{pauli}$	$\Box \Delta E^{pol}$	$\Box \Delta E^{disp}$	$\Box \Delta E^{\rm corr}$	$\Box \Delta E^{\text{tot}}$
[ReCl] ⁺ /CH ₄	-53.2	165.8	-167.9	-6.3	-49.4	-110.5
[ReCl ₂]⁺/CH ₄	-80.4	243.6	-195.1	-8.8	-49.8	-90.4
[ReCl ₃] ⁺ /CH ₄	-33.9	82.9	-44.4	-10.9	-28.5	-34.3

Figure S10. PES and selected structural information for the reaction of $[ReCl_2F]^+$ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Figure S11. PES and selected structural information for the reaction of $[ReCl_2Br]^+$ with CH₄ as calculated at the CCSD(T)/BSII//PBE0-D3(BJ)/BSI level of theory. The relative energies of structures are given in KJ/mol and bond lengths are given in Å. Charges are omitted for the sake of clarity.

Clusters	Spin state	Charge of Re
	6	1.25
[ReCl₂F]⁺	4	1.29
	2	1.02
	6	0.93
[ReCl ₃]⁺	4	0.82
	2	0.50
	6	0.84
[ReCl₂Br]⁺	4	0.69
	2	0.35

Table S3. NPA charge of Re in $[\text{ReCl}_2L]^+$ (L = F, Cl, Br) as calculated at the PBE0/def2–TZVP level of theory.

Figure S12. Different components of the total interaction energy of the ground state EC structures in $[\text{ReCl}_2L]^+$ (L = F, Cl, Br)/CH₄ systems as calculated at the PBE0-D3(BJ)/def2–TZVP level of theory using GKS-EDA method.

Table S4. Decomposition of interaction energies (KJ/mol) in the ground state EC structures for $[\text{ReCl}_2L]^+$ (L = F, Cl, Br)/CH₄ systems as calculated at the PBE0-D3(BJ)/def2–TZVP level of theory.

System	$\Box \Delta E^{ele}$	$\Box \Delta E^{pauli}$	$\Box \Delta E^{pol}$	$\Box \Delta E^{disp}$	$\Box \Delta E^{\rm corr}$	$\Box \Delta E^{\text{tot}}$
[ReCl ₂ F]⁺/CH ₄	-38.1	93.3	-55.3	-9.6	-30.1	-40.2
[ReCl ₃] ⁺ /CH ₄	-33.9	82.9	-44.4	-10.9	-28.5	-34.3
[ReCl ₂ Br] ⁺ /CH ₄	-32.7	85.0	-42.3	-10.9	-27.2	-32.7

Cartesian coordinates

6TS1/2

1	6 ((charge	multi	plicity)
---	-----	---------	-------	---------	---

C	2.56381100	-0.05027100	-0.00080100
Н	2.88144300	0.41799000	-0.92598100
Н	0.97610700	1.41579800	0.00012200
Н	2.43397200	-1.13726800	-0.00300200
Н	2.88152900	0.41394100	0.92628400
Re	0.13833900	-0.01155000	0.00020500
Cl	-2.05478600	0.00337600	-0.00047000
^₄ TS1/2			
1 4			
CI	-1.99057600	0.21728200	0.00012300
Re	0.16452400	-0.10608200	-0.00004900
С	2.15727400	0.39538600	0.00030500
Н	1.11358400	1.31864900	-0.00244300
Н	2.70935900	0.67287600	-0.89980800
Н	2.70698900	0.67365400	0.90163800
Н	2.02688400	-0.77510600	0.00036200
^₄ TS2/3			
14			
CI	1.88923400	0.40424300	-0.00000300
Re	-0.19394100	-0.18921200	0.00000200
С	-1.76804400	0.99814400	-0.00000600
Н	-0.61627700	-1.78689300	-0.00005900
Н	-2.00340700	1.55281000	0.91155400
Н	-2.00340300	1.55281200	-0.91156400
Н	-2.34007300	0.01114200	-0.00000800
² TS2/3			
12			
CI	1.90093200	0.30152400	0.02147300
Re	-0.20274100	-0.13900200	-0.02465700
С	-1.76260300	0.81041400	-0.01217000
Н	-0.64948400	-1.52608500	0.70607600
Н	-2.41755400	1.66586600	0.11561200
Н	-2.21374300	-0.12664500	-0.48220900
Н	-1.25384400	0.42364500	1.21781700
⁴TS3/4			
14			
CI	1.93198200	0.32804200	-0.00009400
Re	-0.21093100	-0.17617600	0.00006300

С	-1.60286700	1.10045800	-0.00002600
Н	-1.42240200	-1.44982900	-0.00134600
Н	-2.01599400	1.52362900	0.92123200
Н	-2.01469900	1.52438100	-0.92153500
Н	-1.95356000	-0.56445700	-0.00128700
² TS3/4			
12			
CI	1.91910000	0.24793500	-0.00040300
Re	-0.23652100	-0.13848500	-0.01445200
С	-1.44668100	1.09420200	0.01485300
Н	-1.46285500	-1.32904900	-0.31485400
Н	-2.16546000	1.90947100	0.05076400
Н	-1.96091500	-0.40358600	-0.23441400
Н	-0.61633900	-0.57055000	1.50016200
2705/0			
-1 35/6 12			
CI	2.05927700	-0.26367600	-0.11057600
Re	-0.11437600	0.05661300	0.04842100
С	-0.93457900	1.55050900	-0.21636700
Н	-1.39849700	2.51737100	-0.38655700
Н	-0.39234800	0.21466100	1.63679700
С	-1.83778500	-1.23704200	-0.16412000
Н	-1.56423000	-1.94909000	0.62265000
Н	-1.70068900	-1.66546100	-1.16287400
Н	-2.90221200	-1.02749500	-0.03065800
Н	-1.83731200	0.26574800	-0.14820100
² TS6/7			
12			
CI	1.99933900	-0.12568400	0.21449700
Re	-0.17797800	0.00147200	-0.14884900
С	-0.82726300	1.58868800	0.50376800
Н	-0.38459100	2.53906200	0.18332500
Н	-1.58535900	1.66336200	1.28738000
С	-1.27705500	-1.30355200	0.63045400
Н	-1.64435700	-0.54494500	-0.97297300
Н	-1.21596900	-2.36839000	0.38108800
Н	-1.17731900	0.08724600	-1.57463700
Н	-2.00689500	-1.06089100	1.40768000
² TS5/8			
12			
CI	2.00589100	-0.35337000	-0.19435900
Re	-0.13602800	0.07809200	0.13521400

С	-0.62766100	1.55062900	-0.55733700
Н	-0.85043700	2.49720500	-1.04288200
Н	-1.25386300	0.33926100	1.43135700
С	-1.74595600	-1.21933600	-0.45511100
Н	-1.43161900	-2.20364000	-0.09369200
Н	-1.56690600	-1.09409700	-1.53202600
Н	-2.82270600	-1.10917400	-0.30753600
Н	-1.73083500	-0.26689000	0.78247900
³ TS10/11			
13			
С	-0.36776100	1.77646300	-0.72265600
Н	-1.16228400	1.85535500	-1.46893200
Н	-0.97629500	1.42524800	0.90345800
Н	-0.78837600	0.72767900	1.59668700
Н	0.20471500	2.69454400	-0.55078500
Re	0.01672500	0.16350700	0.16558000
CI	1.98368400	-0.70687600	-0.25703800
CI	-1.76754200	-1.03575100	-0.24666900
¹ TS10/11			
11			
Н	-0.57119500	0.48892100	1.51199700
Re	0.01145200	0.19506700	0.03870600
CI	1.65816300	-1.20836900	-0.06571700
CI	-1.94811800	-0.75933400	-0.10489200
С	0.46156600	1.97740200	-0.29278300
Н	0.78861700	1.36563500	1.03020200
Н	-0.34399100	2.71507900	-0.18769500
Н	1.42753500	2.38688300	-0.60039500
³ TS12/13			
13			
С	0.36810000	1.01685000	-1.62334900
Н	-0.07748000	1.98123700	-1.88615700
Н	1.04997200	0.59722500	-2.36583000
Re	-0.05073200	0.10086500	-0.04366900
CI	1.59526100	-1.35648800	0.07075500
CI	-2.14559300	-0.52166600	0.22130500
С	0.94933400	1.52510200	1.28330900
Н	0.24009700	2.33644100	1.45283500
Н	1.95974000	1.93302200	1.18191300
Н	0.99222100	0.84092200	2.13612700
Н	1.09138800	1.42316200	-0.16852500

¹TS12/13

11			
С	-0.07250300	1.57780400	-1.21312000
Н	-1.03322300	2.07860900	-1.38591000
Н	0.78998200	1.97376900	-1.75392000
Re	-0.05129100	0.15110000	-0.07634700
CI	1.57179400	-1.32010600	-0.30316400
CI	-1.99448500	-0.74692000	0.32544400
С	1.22664900	0.99488500	1.53766000
Н	0.97649200	1.84871200	2.17343800
Н	2.07390800	1.28095500	0.91131600
Н	1.45988900	0.12971200	2.15451700
Н	-0.15933100	1.05904400	1.30058600
¹ TS13/14			
11			
С	-0.10225300	0.91329600	-1.75440900
Н	0.30710600	1.93010800	-1.66339100
Н	-0.55881500	0.70254500	-2.72238500
Re	0.01873600	-0.04558400	-0.12820900
CI	-1.87639500	0.52216200	0.82475700
CI	1.95211500	0.38309800	0.75137300
С	-0.21438500	-2.06524600	-0.06210200
Н	0.56695600	-2.63820500	-0.56329700
Н	-1.15429200	-2.22652100	-0.61525200
Н	-0.34518400	-2.36600100	0.98216100
Н	0.39160300	-0.46087900	-1.69732800
¹ TS14/15			
11			
С	0.22958600	1.50904500	-1.43455000
Н	0.47601600	0.99667700	-2.36984400
Н	0.97980200	2.26518900	-1.17982600
Re	-0.00460300	0.15260100	0.04236000
CI	1.90923900	-0.90751100	0.13002800
CI	-1.63384700	-1.27581500	-0.28993800
С	-0.79025300	1.22451700	1.39472100
Н	-1.47837500	1.96482900	0.95439700
Н	0.59577100	0.81544000	1.43069600
Н	-0.79682600	1.22679800	2.48481700
Н	-0.74880700	2.00112900	-1.53977300
⁶ TS16/17			
16		0.00115555	
Re	0.10808600	-0.09445900	0.00006200
CI	-2.00846700	-0.99961700	-0.00015700
Cl	-1.57130200	1.63093300	0.00001500

CI	2.28627600	0.89937600	-0.00014100	
С	1.24632300	-1.91518400	0.00001100	
Н	2.34937500	-2.01150800	0.00022600	
Н	0.92789000	-2.45589400	-0.89687100	
Н	0.92773800	-2.45574300	0.89694100	
Н	2.20001200	-0.52306400	-0.00023000	
4TS16/17				
14				
Re	0.09795300	-0.08303900	-0.08715400	
CI	2.25758300	-0.39894800	-0.34938400	
CI	-0.22006800	2.02131200	0.39823300	
CI	-2.18088900	-0.46404700	-0.61042300	
С	-0.38626400	-1.31717000	1.59796800	
Н	-1.37420400	-1.63677600	1.98476000	
Н	0.04718900	-0.71505300	2.40081300	
Н	0.17865300	-2.23215100	1.39979400	
Н	-1.44320000	-0.97649300	0.71013500	
² TS16/17				
12				
Re	0.00066900	-0.07356400	0.02249700	
CI	1.89059600	-1.09540900	-0.21634700	
CI	-0.01842900	1.96222300	-0.81931100	
CI	-1.87148400	-1.12825100	-0.21421600	
С	-0.00667000	1.06357100	1.90776300	
Н	-0.91182400	1.65983100	1.79039900	
Н	0.88862800	1.67410100	1.78793900	
Н	-0.00162200	0.60948400	2.90443900	
Н	0.00309500	-0.36315500	1.63118900	
⁶ TS2/18				
16				
С	2.31732600	0.07802600	0.00000400	
Н	2.64343700	0.58377200	-0.91181400	
Н	-0.69782000	1.38978400	-0.00000500	
Н	2.55593500	-0.99868400	0.00007100	
Н	2.64342400	0.58388300	0.91176600	
Re	0.20370300	-0.02837100	-0.00000100	
CI	-2.13686300	0.00593600	0.0000200	
⁶ TS18/19				
16				
С	2.14940500	0.47310000	0.00001300	
Н	2.72341700	0.67524400	0.90827500	
Н	-0.48058400	-1.68814100	0.00006100	

Н	-0.24476100	1.52932000	-0.00006600
Н	2.72344400	0.67517100	-0.90824800
Re	0.22552400	-0.10872200	0.00000800
CI	-2.03130900	0.24258700	-0.00004000
⁶ TS19/20			
16			
С	2.21056900	-0.56599200	-0.01286000
Н	2.80567800	-0.62320000	-0.92569500
Н	-0.10335900	1.69633100	0.08152100
Н	-2.55847700	-0.39548800	1.16462300
Н	2.80013800	-0.69721700	0.89577700
Re	0.29657200	0.09431300	0.00349800
CI	-2.26178200	-0.21517300	-0.08243700
⁶ TS20/21			
16	- /	/	
С	2.16705000	-0.55757100	-0.00009400
Н	2.75275100	-0.71334300	-0.90858700
Н	-0.47189600	1.67156100	-0.00096400
Н	-1.53587100	1.01449500	0.00008600
Н	2.75314800	-0.71264700	0.90826200
Re	0.26165300	0.10030200	0.00002900
CI	-2.12496600	-0.31983900	-0.00002400
4TS2/22			
14			
CI	-1.88478300	0.38833500	-0.03271200
Re	0.21768700	-0.19280500	0.02800600
С	1.62073000	1.15494800	-0.01516500
Н	0.80514700	-1.72311900	-0.19473600
Н	1.88434200	1.74773200	-0.89144000
Н	2.14686000	1.41996800	0.90887800
Н	1.15402000	-0.51556800	-1.27604300
4TS22/23			
14			
CI	-1.91863200	0.30574200	-0.02266500
Re	0.22921900	-0.13746500	-0.00097800
С	1.62149300	1.10509700	0.01566800
Н	1.89395900	-0.39349200	-0.54784600
Н	2.53156800	1.60772900	0.34634800
Н	1.32671200	-1.36945300	-0.49362800
Н	-0.05586100	-1.36309200	1.05977700

4TS3/24

14			
CI	-2.13514900	0.23515500	-0.00017700
Re	0.25591900	-0.15780800	0.00004500
С	1.93590000	0.76662800	-0.00019300
Н	-1.42021100	1.36631400	0.00201400
Н	2.39239800	1.16189200	-0.90968400
Н	2.39285300	1.16101400	0.90945800
Н	2.12316800	-0.45100700	-0.00096600
4TS24/25			
14			
CI	-2.18560600	0.18502200	0.07794000
Re	0.28236700	-0.13767300	-0.01789400
С	1.92030500	0.76345200	0.08815400
Н	-2.34564900	1.19287200	-0.72142800
Н	2.40110500	1.14418800	-0.81794200
Н	2.47632200	0.97753900	1.00288200
Н	1.92417300	-0.71521600	0.02464900
² TS6/26			
12			
Cl	2.15106400	0.27960100	0.17058500
Re	-0.20211600	-0.02573900	-0.05567700
С	-0.72777700	-1.60665200	0.26729500
Н	-0.96115600	-2.64539800	0.48492100
Н	0.36870100	-0.52863500	-1.57805100
С	-1.89683700	1.05323800	0.16050200
Н	-1.78172100	1.98244900	-0.41496900
Н	-1.73610300	1.29424600	1.24065000
Н	-2.89807000	0.64644200	0.05825800
Н	1.34665500	-0.25143500	-1.08179700
² TS6/27			
12			
Cl	-2.06735900	-0.26911600	-0.18345100
Re	0.26370200	-0.02177000	0.17419200
С	1.40364900	-1.10519300	-0.74957100
Н	1.40850400	-2.16966100	-0.47758800
Н	1.32346000	0.08815700	1.44129900
С	0.40061800	1.71834100	-0.47039000
Н	0.06635400	2.58845400	0.10508300
Н	-1.14297800	0.90431800	-0.66597600
Н	0.83911000	1.93421700	-1.44759400
Н	2.04736200	-0.81664800	-1.58121800

²TS27/28

12			
CI	2.23269900	0.09764200	0.16125400
Re	-0.28716200	0.00566500	-0.17486400
С	-0.95901600	-1.50662000	0.59568700
Н	-0.86295600	-2.47607700	0.09217000
Н	-1.43861600	-0.02198800	-1.34455100
С	-1.10570900	1.39384500	0.67879900
Н	-1.06015700	2.39606900	0.23421500
Н	2.46955100	-1.10531800	0.57433600
Н	-1.64674800	1.31514100	1.62237500
Н	-1.49144700	-1.51595300	1.54803000
² TS28/29			
12			
CI	2.21432900	-0.00008600	-0.26403500
Re	-0.28445200	0.00002500	0.17418800
С	-1.04070500	1.45803300	-0.61851900
Н	-0.91737400	2.45604100	-0.18195400
Н	-1.43770300	0.00014200	1.34310100
С	-1.04024400	-1.45832000	-0.61819200
Н	-1.63165600	-1.40790100	-1.53364000
Н	-0.91720000	-2.45609000	-0.18070500
Н	-1.63268600	1.40682100	-1.53354000
Н	2.71259300	0.00232000	0.93153700
² TS26/29			
12			
CI	2.24579300	0.10059600	0.09597300
Re	-0.22798500	-0.00875200	0.00725200
С	-1.03842300	-1.53198200	0.01359900
Н	-1.62353700	-2.44329500	-0.04207300
Н	-0.09304600	0.00132200	-1.62999100
С	-1.66772400	1.21500700	-0.03255400
Н	-2.73773900	1.24576600	-0.20139700
Н	-1.23034400	2.17415900	0.29764100
Н	-1.78572000	-0.24527200	0.65926400
Н	2.62763100	0.11545200	-1.14513600
² TS29/30			
12			
CI	2.33214500	-0.14453000	-0.04744400
Re	-0.26090100	-0.04320000	-0.02896600
С	-0.83035200	1.68271900	0.01291900
Н	-0.61770800	2.32874800	-0.85137000
Н	-0.11121000	-0.28632700	1.56918500
С	-1.83701800	-1.00844100	0.02151100

Н	-1.63724100	-2.08319900	-0.13170500
Н	-2.87788500	-0.78823100	0.24218500
Н	-1.40952000	2.13519400	0.81936900
Н	2.57888200	0.34519400	1.12473300
² TS30/31			
12			
Cl	2.18931700	-0.00006600	0.01721700
Re	-0.21775100	-0.00000700	-0.05739700
С	-1.31798300	1.46737700	0.06789600
Н	-0.91670200	2.37773100	-0.40537900
Н	0.08128400	-0.00004900	1.59076100
С	-1.31826600	-1.46718400	0.06793900
Н	-0.91803100	-2.37756100	-0.40613800
Н	-2.24851700	-1.61025100	0.61761700
Н	-2.24869000	1.61077300	0.61668600
Н	1.18105800	-0.00015700	1.18354400
4TS32/33			
14			
CI	-2.10254700	-0.19411500	-0.00009200
Re	0.10121700	0.02087300	0.00000700
С	1.06311000	1.63678800	0.00011800
Н	1.32720900	2.16580900	-0.92016400
Н	1.32718500	2.16569800	0.92047000
С	1.84477500	-1.29633300	0.00000300
Н	1.63450300	-1.87527500	0.90521200
Н	2.91833800	-1.09070400	-0.00016400
Н	1.63427400	-1.87541400	-0.90506700
Н	1.86318000	0.20166400	0.00004600
4TS33/34			
14			
Cl	-2.03904800	0.05888500	0.01063600
Re	0.15296100	-0.02677900	-0.00048600
С	1.28373700	1.66663200	0.03034900
Н	1.24016300	2.21138800	-0.91762300
Н	0.84580400	2.27024300	0.84032200
С	1.16371100	-1.69758700	0.08028400
Н	2.32910300	1.44030900	0.26356000
Н	1.16636400	-2.45626400	-0.70142700
Н	1.74907400	-1.94632800	0.97151300
Н	1.17657400	-0.32621500	-1.26450700

4TS34/35

14

CI	-1.98156500	0.26658600	-0.21419500	
Re	0.19226500	0.00462800	0.11744900	
С	0.72833900	-1.69100000	-0.50722500	
н	0.08248200	-2.22025900	-1.21449600	
Н	1.62079500	-2.23980300	-0.19362300	
С	1.56887200	1.38023700	-0.39816700	
Н	0.02210900	-1.47816300	1.07431800	
Н	1.87040900	2.16355600	0.30169500	
н	2.06642000	1.44580400	-1.36532700	
Н	-0.17876000	-0.68565600	1.66243200	
4TS32/36				
14				
CI	2.05881500	-0.58028200	0.00003700	
Re	-0.30200200	-0.07483200	-0.00002400	
С	-2.12942700	-0.41295600	0.00009900	
Н	-3.12270800	0.02991500	0.00023400	
Н	-2.16408600	-1.52851900	0.00001800	
С	0.46502600	1.93255800	0.00002800	
Н	-0.00256100	2.32319200	-0.90883900	
Н	1.49199900	2.34240500	-0.00003400	
Н	-0.00249400	2.32318000	0.90892900	
Н	1.43655800	0.86941100	0.00007200	
4TS36/37				
14				
CI	-2.20459320	0.44949599	-0.11037597	
Re	0.30940280	0.01019799	0.09333203	
С	-0.07512920	-1.97521801	-0.30875597	
Н	-0.66559720	-2.13045301	-1.21753797	
Н	-0.60359120	-2.40302201	0.55501403	
С	1.58632280	1.02239399	-0.67118097	
Н	0.89719180	-2.46900401	-0.41786997	
Н	1.71254980	0.26022099	0.97426003	
Н	2.48829080	1.27585599	-1.22476097	
Н	-2.72442520	-0.67657401	-0.48491497	
4TS37/38				
14				
CI	2.25084700	-0.35033900	0.01513300	
Re	-0.33943000	-0.06518700	0.02168800	
С	-0.05027800	1.96763800	-0.04519500	
Н	-0.28211700	2.17781600	-1.10589000	
Н	0.93822400	2.35700000	0.19906900	
С	-1.93302300	-0.89466000	-0.20499400	
Н	-0.82281000	2.41223400	0.59251300	

н	-0.28874600	-0.69374100	1.52564700
Н	-2.95229700	-1.24110300	-0.36622600
Н	2.50040200	-0.60526300	-1.22781900
4TS38/39			
14			
CI	2.13031100	-0.25053700	-0.19411400
Re	-0.29873600	-0.07639400	0.08423900
С	-0.17893200	2.00760500	-0.08900400
Н	-1.13825900	1.93185700	-0.65331800
Н	0.63032700	2.41866900	-0.68723400
С	-1.79582700	-0.83864000	-0.47712200
Н	-0.30108000	2.48236900	0.88558200
Н	0.22279000	-1.35016500	1.15200400
Н	-2.58841600	-1.37985300	-0.99076900
Н	1.21308000	-1.12800400	0.67247400
⁵TS9/40			
15			
С	-0.66174300	1.92913400	0.00000000
Н	-0.20754500	2.33679800	0.90805800
Н	-0.20760900	2.33678700	-0.90809600
Н	-1.68906300	0.82180600	0.00001200
Н	-1.70670200	2.29304300	0.00003600
Re	0.08936400	-0.07174300	-0.00000100
Cl	-2.22011700	-0.60528500	0.00000100
CI	2.28359100	-0.21721500	0.00000100
⁵TS40/41			
15			
С	0.04612800	1.96439500	-0.00239500
Н	1.08013600	2.29883600	-0.11070500
Н	-0.56049300	2.34180200	-0.83124700
Н	2.76963400	-0.19666000	1.18002300
Н	-0.37600000	2.32828700	0.94006200
Re	-0.08247400	-0.07865300	-0.00702900
Cl	2.43178800	-0.36814100	-0.05948100
Cl	-2.25558200	-0.37654300	0.02203600
⁵TS41/42			
15			
С	0.07764200	1.98156400	-0.10301200
Н	-0.77854000	2.58435400	0.18306300
Н	1.05432800	2.45620900	-0.14127100
Н	2.72174700	-0.57322200	1.11355400
Re	-0.08561500	-0.06644800	0.01403700

CI	2.41461900	-0.34140700	-0.12411800
CI	-2.24855100	-0.35535300	-0.05982400
Н	0.13457500	0.47179800	1.53696500
⁵TS42/43			
15			
С	0.28857000	1.91998400	0.04674500
Н	-0.09114600	2.56278900	0.84240400
Н	1.02663400	2.37033700	-0.61788000
Н	1.39110400	-1.17054900	0.71177600
Re	-0.07801200	-0.04066300	0.01625000
CI	2.33533700	-0.36196200	-0.11019300
CI	-2.24793500	-0.27865100	-0.09859600
Н	0.30704400	-1.34235700	1.11386500
³ TS44/45			
13	0 27025400	1 92970200	0 15070100
	0.27023100	2 50247200	-0.13979100
	-0.31835700	2.39347300	-0.14029400
	2 64099900	0.70571600	1.12102300
	2.04900000	-0.79571000	0.27262500
	0.00744200	2.22077200	-0.37202500
Re Cl	-0.09744200	0.00320700	0.05219200
CI	-2 20526500	-0.46730900	-0.1261000
3TQ 46/46	2.20020000	0.10100000	0.11201000
1 345/40			
С С	0 06086500	1 82324000	-0 18024500
U U	-0 77568300	2 48553700	-0.10024000
Ц	0.53255800	0 10172300	1 64866900
н	1 51900900	-0.09167200	1 10004000
н	0.95202700	2 30710500	-0 58917800
Re	-0.05141500	-0.00123500	0.07063600
	2 25089300	-0.00120000	-0 20735900
CI	-2.17659900	-0.45871200	-0.17104500
¹ TS11/47			
11			
С	-0.09215900	1.85862000	-0.49186000
Н	-1.09599900	2.30347200	-0.45877100
Н	1.74634100	1.24770800	1.89660700
Н	1.02135800	1.10946200	2.06862200
Н	0.71773000	2.48749600	-0.86625000
Re	-0.01526500	0.13324300	0.05806600
CI	1.87982300	-0.86261200	-0.20552500

CI	-1.92050600	-0.80168700	-0.03235900
³ TS12/48			
13			
С	0.30434200	1.71024900	-0.99343700
Н	-0.22722600	2.62488200	-0.73552300
Н	0.52091900	1.60655800	-2.05878000
Re	-0.02773300	0.03141800	0.04727500
Cl	1.89687200	-1.04535000	-0.17877500
CI	-2.10078900	-0.60604600	-0.31408600
С	-0.00091300	0.77038300	1.73219600
Н	-0.73664000	0.46133700	2.48108000
Н	1.65967000	1.97493500	-0.49431800
Н	0.75069400	1.48080900	2.08484800
Н	1.75854200	2.68507400	-0.87682800
¹ TS15/49			
11			
С	0.10079700	1.38560000	1.45568900
Н	-0.65034300	1.16861700	2.22054100
Н	-0.59543600	1.82429200	0.09782800
Re	0.10234800	0.20536000	-0.04105100
CI	-2.03749900	-0.42949100	-0.24003000
CI	0.90724500	-1.84570200	0.26286500
С	1.38200100	1.00206300	-1.09026800
Н	2.31247500	0.70016000	-0.56620000
Н	-0.67775700	1.43739100	-0.93730200
Н	1.49729500	1.59450200	-1.99079700
Н	0.75519000	2.22532800	1.67404900
¹ TS13/50			
11			
С	0.06047100	1.52660500	-1.24389400
Н	-0.24687300	2.14639600	-0.31511900
Н	0.09116100	2.04216800	-2.19696400
Re	0.15795800	0.19435900	-0.07002200
CI	0.73413400	-1.92111800	-0.22216100
CI	-2.19286500	-0.24443700	0.33333500
С	1.49045700	0.90721200	1.27817600
Н	1.45980400	1.95532500	1.56336900
Н	2.40972000	0.73206900	0.67598900
Н	1.50626900	0.26418000	2.16136500
Н	-1.57406400	0.49443800	1.26734300

¹TS50/51

11

С	-0.06260500	1.83219100	-0.74803400	
Н	-1.06192500	2.28216000	-0.76468400	
Н	0.75358200	2.42675900	-1.16419400	
Re	0.07694700	0.16399100	-0.03628500	
Cl	2.00912100	-0.81329200	-0.00459000	
Cl	-1.76086600	-0.95924300	-0.53436800	
С	-0.66512900	0.34728500	1.76279900	
Н	-1.89941100	-0.22980400	1.87001300	
Н	-0.96031900	1.29535000	2.20823100	
Н	-0.19026000	-0.34346100	2.46840300	
Н	-2.26664600	-0.67410800	1.17733400	
⁶ TS52/53				
16				
Re	0.24860900	-0.05304000	-0.00001900	
CI	-1.86143700	-1.15735500	-0.00000900	
CI	-1.47036200	1.47020300	0.00004900	
F	1.79775100	-1.35610700	0.00010000	
С	2.06968200	1.14201700	-0.00002200	
Н	2.00873800	1.75587100	0.90162000	
н	2.00881200	1.75574600	-0.90175500	
н	3.12758500	0.79080300	0.00004700	
н	2.25190600	-0.28997900	0.00006700	
4TS52/53				
14				
Re	-0.01121400	-0.05990700	-0.10556900	
CI	1.50737200	1.41025700	0.40134000	
CI	-2.03887900	0.74319800	-0.06641600	
F	1.44629900	-1.28479900	-0.72851100	
С	-0.37633400	-1.97035100	0.89072100	
н	-0.37206700	-1.66364400	1.93818200	
н	0.20553000	-2.92253300	0.88246600	
Н	-1.36436800	-2.24357500	0.51704500	
Н	0.64888600	-1.90068600	0.09853500	
² TS52/53				
12				
Re	-0.02027300	0.14383600	-0.09462200	
Cl	-1.99050200	-0.64796700	0.39555300	
CI	1.36056600	-1.53535000	-0.22197500	
F	-0.07948900	1.64831700	-1.09054700	
С	1.34211700	1.13736600	1.34434700	
Н	1.96116600	0.37841600	1.81357700	
Н	1.02518300	1.88137000	2.08338400	
Н	1.86637300	1.67438400	0.54641200	

Н	0.03934	300	0.73549100	1.4512600	0
⁶ TS54	./55				
16					
Re	-0.36515	000	-0.05352600	0.00003400)
CI	0.822548	300	2.01906700	0.00030600)
CI	-2.714559	00	0.42706200	-0.0003510	0
Br	2.04912	100	-0.47419400	-0.0001970	0
С	-1.07045	700	-2.08623200	0.00052400)
Н	-2.32847	900	-0.93659400	-0.0002040	0
Н	-2.12661	500	-2.41972800	0.00050900)
Н	-0.64530	700	-2.55001200	-0.8951100	0
Н	-0.64568	600	-2.54920800	0.89676400)
4TS54	/55				
14					
Re	0.18724	700	-0.04737000	-0.04562000)
CI	2.366591	100	-0.69209200	-0.7259880	0
CI	0.75853	100	2.02561500	0.33997700)
Br	-2.13967	900	-0.16610600	-0.1827420	C
С	0.66875	300	-1.29045800	1.6348790	0
Н	0.35393	500	-0.63024700	2.4473520	0
Н	1.65065	400	-1.68783400	1.9596750	0
Н	0.01053	900	-2.15384700	1.5111880	0
Н	1.69050	200	-1.08873600	0.6521640	0
² TS54	/55				
12					
Re	-0.32337	400	-0.00008200	0.08243400)
CI	-0.67898	700	2.02216600	-0.5885000	0
CI	-0.67435	300	-2.02316200	-0.58862500)
Br	2.034474	400	0.00129900	0.1321190	C
С	-2.42608	500	-0.00221400	0.83901000)
Н	-1.04572	700	-0.00116200	1.56523200)
Н	-2.73282	700	-0.89469300	1.38278100)
Н	-2.735124	400	0.88956500	1.3826140	0
Н	-2.87659	500	-0.00277700	-0.1602660	0
MECP	21				
CI	1.96854232476555	0.0	0049894808393	0.0004	5372836349
Re	-0.19571489175736	-0.0	00032551772021	-0.0001	8499735677
С	-2.29217305816218	0.0	0047774296825	0.0007	4483546155
Н	-1.71109873546328	1.0	7354590136882	-0.0000	0462509079
Н	-2.91196057663834	0.0	0076126236746	0.9013	0929905938
Н	-2.91371389811522	0.0	0095130426531	-0.8986	61487486178
Н	-1.71226916462916	-1.(07301564133357	-0.0002	2436557508

MECP2

CI	-1.90594009738659	0.01080618904801	-0.13213454275195
Re	0.21928160374776	0.03997680278177	0.10713251644261
С	1.67635765679387	1.15915198653018	-0.28002058586407
Н	0.86884766930523	-1.45615564706665	0.04600018745790
Н	2.12236991766513	2.05234912103496	-0.70489492532026
Н	2.10892338616069	0.81687224106884	0.71212619141210
Н	1.70911586371391	0.24223130660289	-1.04722784137633
MEC	P3		
Re	0.18393478279192	0.03604668422349	-0.07616560340119
CI	0.75760697856150	-2.01769360579709	-0.45138550280784
CI	-1.89006199698657	0.42152166826786	0.41846558011423
С	2.04645414949012	1.35692400229574	-0.05602290510490
н	1.53934109668534	2.29249987353103	-0.30934670025285
Н	1.60094758525629	0.74883869316529	0.86375553317651
Н	2.37618091070324	0.80121797071004	-0.94532772248174
Н	2.94627531349815	1.59235439360362	0.52419032075778
MEC	D <i>1</i>		
C	-0.27642087958554	1.83032272317001	-0.86732892437538
Н	-1.18801161359458	2.09592965131223	-1.40986785218922
н	-1.32493755356004	0.59842887789577	1.48603428047510
н	-0.80707026445462	1.24997353233315	1.53291063134094
н	0.56870018579274	2.52397813647735	-0.97131466723254
Re	-0.07834218368139	0.29191854350107	0.12785351601558
CI	1.88717910189271	-0.56588848204368	-0.26636313214267
CI	-1.74165567280926	-1.05718702264590	-0.36336605189181
MEC	P5		
С	-0.12456940016376	1.88008057141923	-0.50450710120633
н	-1.07653218830973	2.42645123468666	-0.47706054589346
Н	1.27081274496378	0.57039031239533	1.61447689722268
Н	0.65647422207481	1.11222328859409	1.76999669274254
Н	0.69265975222464	2.36145260497539	-1.04950871980034
Re	0.00407840736277	0.21999251183882	0.28612824466165
CI	1.83110220918158	-0.74944014104390	-0.45534982007078
CI	-1.81489974733409	-0.90910338286563	-0.12815764765595
MFC	P6		
С	0.23718081209684	0.87387385247443	-1.79561004990709
Н	-0.62866586853194	1.31156522226943	-2.30975320359143
Н	1.18855034037853	0.90552613094565	-2.33522106360713
Re	0.02938526635165	0.18239237519472	-0.11110019933446
CI	1.64706940800490	-1.24875498403233	0.33085101651383
CI	-1.94837727486226	-0.64393268466639	0.22473814434001

С	1.13340566385335	1.60982533800719	1.45522205152367
Н	0.99735081187438	2.63721742344934	1.80855912893955
Н	2.18526196603874	1.34392987537193	1.40875218126868
Н	0.56903169359419	0.97126480070923	2.14237301889077
Н	0.68341118120163	1.86280965027678	0.41336697496359
MEC	P7		
Re	0.09590461507516	-0.27448802581189	0.05519518340479
CI	1.73775769280192	-0.48038699500734	-1.33813726524439
CI	0.35669510120570	1.61189002373020	1.12751226233242
CI	-1.71349529595841	-1.10674218700277	-0.83070887046005
С	-0.44317434359248	-1.27253022456279	2.17599450467503
Н	-0.74608580927270	-2.30823417507742	2.33905433716635
Н	0.12125521550311	-0.85943209790818	3.00781956702917
Н	0.37891471226456	-1.51028933273220	1.35970313642173
Н	-1.34924888802687	-0.68652098562758	1.99522414467493

Reference

1. Becke, A. D., A new mixing of Hartree–Fock and local density - functional theories. *J. Chem. Phys.* **1993**, *98* (2), 1372-1377.

2. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* **1994**, *98* (45), 11623-11627.

3. Jr., T. H. D., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* **1989**, *90* (2), 1007-1023.

4. Woon, D. E.; Jr., T. H. D., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. *J. Chem. Phys.* **1993**, *98* (2), 1358-1371.

5. Wilson, A. K.; Woon, D. E.; Peterson, K. A.; Jr., T. H. D., Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. *J. Chem. Phys.* **1999**, *110* (16), 7667-7676.

6. Figgen, D.; Peterson, K. A.; Dolg, M.; Stoll, H., Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. *J. Chem. Phys.* **2009**, *130* (16), 164108.

7. Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K., Harmonic vibrational frequencies: Scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. *J. Phys. Chem. A* **2004**, *108* (42), 9213-9217.

8. III, G. D. P.; Bartlett, R. J., A full coupled - cluster singles and doubles model: The inclusion of disconnected triples. *J. Chem. Phys.* **1982**, *76* (4), 1910-1918.

9. Pople, J. A.; Head - Gordon, M.; Raghavachari, K., Quadratic configuration interaction. A general technique for determining electron correlation energies. *J. Chem. Phys.* **1987**, 87 (10), 5968-5975.

10. Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K., Basis-set convergence in correlated calculations on Ne, N2, and H2O. *Chem. Phys. Lett.* **1998**, *286* (3), 243-252.

11. Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Olsen, J., Basis-set convergence of the energy in molecular Hartree–Fock calculations. *Chem. Phys. Lett.* **1999**, *302* (5), 437-446.

12. Adamo, C.; Barone, V., Toward reliable adiabatic connection models free from adjustable parameters. *Chem. Phys. Lett.* **1997**, *274* (1), 242-250.

13. Karton, A.; Tarnopolsky, A.; Lamère, J.-F.; Schatz, G. C.; Martin, J. M. L., Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. *J. Phys. Chem. A* **2008**, *112* (50), 12868-12886.

14. Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. *Phys. Rev. B* **1986**, *33* (12), 8822-8824.

15. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38* (6), 3098-3100.

16. Becke, A. D., Density - functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98* (7), 5648-5652.

17. Perdew, J. P.; Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy. *Phys. Rev. B* **1992**, *45* (23), 13244-13249.

18. Schmider, H. L.; Becke, A. D., Optimized density functionals from the extended G2 test set. *J. Chem. Phys.* **1998**, *108* (23), 9624-9631.

19. Gill, P. M. W., A new gradient-corrected exchange functional. *Mol. Phys.* **1996**, *89* (2), 433-445.

20. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, *3*93 (1), 51-57.

21. Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C., Development and assessment of new exchange-correlation functionals. *J. Chem. Phys.* **1998**, *109* (15), 6264-6271.

22. Henderson, T. M.; Izmaylov, A. F.; Scuseria, G. E.; Savin, A., The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. *J. Chem. Phys.* **2007**, *127* (22), 221103.

23. Henderson, T. M.; Izmaylov, A. F.; Scuseria, G. E.; Savin, A., Assessment of a Middle-Range Hybrid Functional. *J. Chem. Theory Comput.* 2008, *4* (8), 1254-1262.
24. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. *J. Chem. Phys.* 2003, *118* (18), 8207-8215.

25. Heyd, J.; Scuseria, G. E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. *J. Chem. Phys.* **2004**, *121* (3), 1187-1192.

26. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E., Influence of the exchange screening parameter on the performance of screened hybrid functionals. *J. Chem. Phys.* **2006**, *125* (22), 224106.

27. likura, H.; Tsuneda, T.; Yanai, T.; Hirao, K., A long-range correction scheme for generalized-gradient-approximation exchange functionals. *J. Chem. Phys.* **2001**, *115* (8), 3540-3544.

28. Vydrov, O. A.; Scuseria, G. E., Assessment of a long-range corrected hybrid functional. *J. Chem. Phys.* **2006**, *125* (23), 234109.

29. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120* (1), 215-241. 30. Zhao, Y.; Truhlar, D. G., Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent

interactions. J. Chem. Theory Comput. 2008, 4 (11), 1849-1868.

31. Peverati, R.; Truhlar, D. G., Improving the accuracy of hybrid meta-gga density functionals by range separation. *J. Phys. Chem. Lett.* **2011**, *2* (21), 2810-2817.

32. Adamo, C.; Barone, V., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. *J. Chem. Phys.* **1998**, *108* (2), 664-675.

33. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37* (2), 785-789.

34. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865-3868.

35. Schwabe, T.; Grimme, S., Towards chemical accuracy for the thermodynamics of large molecules: New hybrid density functionals including non-local correlation effects. *Phys. Chem. Chem. Phys.* **2006**, *8* (38), 4398-4401.

36. Heyd, J.; Scuseria, G. E., Assessment and validation of a screened Coulomb hybrid density functional. *J. Chem. Phys.* **2004**, *120* (16), 7274-7280.

37. Heyd, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. *J. Chem. Phys.* **2005**, *123* (17), 174101.

38. Heyd, J.; Scuseria, G. E.; Ernzerhof, M., Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. *J. Chem. Phys.* **2006**, *124* (21), 219906.

39. Izmaylov, A. F.; Scuseria, G. E.; Frisch, M. J., Efficient evaluation of short-range Hartree-Fock exchange in large molecules and periodic systems. *J. Chem. Phys.* **2006**, *125* (10), 104103.

40. Henderson, T. M.; Izmaylov, A. F.; Scalmani, G.; Scuseria, G. E., Can short-range hybrids describe long-range-dependent properties? *J. Chem. Phys.* **2009**, *131* (4), 044108.

41. Handy, N. C.; Cohen, A. J., Left-right correlation energy. *Mol. Phys.* **2001**, *99* (5), 403-412.

42. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110* (13), 6158-6170.
43. Ernzerhof, M.; Perdew, J. P., Generalized gradient approximation to the angle-

and system-averaged exchange hole. J. Chem. Phys. 1998, 109 (9), 3313-3320.

44. Perdew, J. P.; Kurth, S.; Zupan, A.; Blaha, P., Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. *Phys. Rev. Lett.* **1999**, *82* (12), 2544-2547.

45. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. *Phys. Rev. B* **1992**, *46* (11), 6671-6687.

46. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Constantin, L. A.; Sun, J., Workhorse semilocal density functional for condensed matter physics and quantum chemistry. *Phys. Rev. Lett.* **2009**, *103* (2), 026403.

47. Peverati, R.; Truhlar, D. G., Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. *J. Chem. Phys.* **2011**, *135* (19), 191102.

48. Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P., Comparative assessment of a new nonempirical density functional: Molecules and hydrogenbonded complexes. *J. Chem. Phys.* **2003**, *119* (23), 12129-12137.

49. Voorhis, T. V.; Scuseria, G. E., A novel form for the exchange-correlation energy functional. *J. Chem. Phys.* **1998**, *109* (2), 400-410.

50. Xu, X.; Goddard, W. A., The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101* (9), 2673-2677.

51. Chai, J.-D.; Head-Gordon, M., Systematic optimization of long-range corrected hybrid density functionals. *J. Chem. Phys.* **2008**, *128* (8), 084106.

52. Chai, J.-D.; Head-Gordon, M., Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Phys. Chem. Chem. Phys.* **2008**, *10* (44), 6615-6620.

53. Yu, H. S.; He, X.; Li, S. L.; Truhlar, D. G., MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chem. Sci.* **2016**, Medium: X; Size: p. 5032-5051.

54. Yu, H. S.; He, X.; Truhlar, D. G., MN15-L: A new local exchange-correlation functional for Kohn–Sham density functional theory with broad accuracy for atoms, molecules, and solids. *J. Chem. Theory Comput.* **2016**, *12* (3), 1280-1293.

55. Cohen, A. J.; Handy, N. C., Dynamic correlation. *Mol. Phys.* **2001,** 99 (7), 607-615.

56. Brémond, E.; Adamo, C., Seeking for parameter-free double-hybrid functionals: The PBE0-DH model. *J. Chem. Phys.* **2011**, *135* (2), 024106.

57. Brémond, É.; Sancho-García, J. C.; Pérez-Jiménez, Á. J.; Adamo, C., Communication: Double-hybrid functionals from adiabatic-connection: The QIDH model. *J. Chem. Phys.* **2014**, *141* (3), 031101.

58. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energyadjustedab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta* **1990,** 77 (2), 123-141.

59. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **2011**, *32* (7), 1456-1465.

60. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.

61. Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. *Chem. Rev.* **1988**, *88* (6), 899-926.

62. Carpenter, J. E.; Weinhold, F., Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure. *J. Mol. Struct.: THEOCHEM* **1988**, *16*9, 41-62.

63. Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural population analysis. *J. Chem. Phys.* **1985**, *83* (2), 735-746.

64. Reed, A. E.; Weinhold, F., Natural localized molecular orbitals. *J. Chem. Phys.* **1985**, *83* (4), 1736-1740.

65. Reed, A. E.; Weinhold, F., Natural bond orbital analysis of near - Hartree–Fock water dimer. *J. Chem. Phys.* **1983**, *78* (6), 4066-4073.

66. Foster, J. P.; Weinhold, F., Natural hybrid orbitals. *J. Am. Chem. Soc.* **1980**, *102* (24), 7211-7218.

67. Neese, F., Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: A case study. *J. Am. Chem. Soc.* **2006**, *128* (31), 10213-10222.

68. Ye, S.; Geng, C.-Y.; Shaik, S.; Neese, F., Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C–H bond activation by non-heme iron(iv)–oxo cores. *Phys. Chem. Chem. Phys.* **2013**, *15* (21), 8017-8030.

69. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33* (5), 580-592.

70. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. *J. Mol. Graphics* **1996**, *14* (1), 33-38.

71. Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W., The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. *Theor. Chem. Acc.* **1998**, *99* (2), 95-99.

72. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7* (18), 3297-3305.

73. Su, P.; Jiang, Z.; Chen, Z.; Wu, W., Energy decomposition scheme based on the generalized Kohn–Sham scheme. *J. Phys. Chem. A* **2014**, *118* (13), 2531-2542.

74. Zou, J., Molecular Orbital Kit (MOKIT), <u>https://gitlab.com/jxzou/mokit</u> (accessed 5 29, 2021)