Supplemental Information

Optimizing Pulsed-Laser Ablation Production of AICI Molecules for Laser Cooling

Taylor N. Lewis,^{a†} Chen Wang,^{b†} John R. Daniel,^b Madhav Dhital,^b Christopher J. Bardeen,^{a*} and Boerge Hemmerling^{b*}

^a Department of Chemistry, University of California, Riverside, CA 92521, USA. E-mail: christob@ucr.edu

^b Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA. Email: boergeh@ucr.edu

[†] These authors contributed equally to this work.

* Corresponding authors

Figure S1. (A) Sample target with various AI:KCI molar ratios, as labelled in pink (1) 10:1, (2) 8:1, (3) 5:1, and (4) 1:4. (B) Target mappings for absorption of AICI, AI, and K. The color map on the right shows the variation in AICI absorption from 0 (dark blue) to 1 (yellow).

Simulated XCI_n Sources

Figure S2. Simulated R_{mol} curves for different XCI_n sources from Model A (A) and Model A' (B). With a fixed scaling factor (γ), the optical density of each source in Model A is roughly 3 times larger than Model A' due to the aluminum recondensation.

Table S1. The R_{mol}^{max} found for each XCI_n source from Model A and Model A'. These values are used to plot against the ρ_{Cl} in Figure 7B.

	Model A	Model A'
	R_{mol}^{max}	R_{mol}^{max}
KCI	3.75	1.55
NaCl	2.69	1.11
CaCl ₂	2.58	1.07
MgCl ₂	2.39	0.99
	1.79	0.74

Average Absorption from Time-Dependent Traces

Figure S3. Theory is compared to the experimental optical density signal from each chloride source at $R_{mol} = 0.25$. The experimental date is acquired by taking the peak optical density value from each time trace (A) and integrated over the time trace (B). Models A and A' are normalized to the AlCl₃ optical density.

Al Density Calculation

If we assume our ablation crater to be cone-shaped, we can calculate the volume of the ablation cone estimating a crater depth of 6 μ m¹ and our known ablation laser spot size of 80 μ m.

$$V = \frac{1}{3} \left[\frac{1}{2} \pi r^2 \right] h$$

The resulting volume of sample ablated is $5.03 \cdot 10^{-9}$ cm³. Then we can use this volume and stoichiometrically convert aluminum density to moles of aluminum in the gas phase after ablation,

$$2.70 \frac{g}{cm^3} \times 5.03 \cdot 10^{-9} cm^3 \div 26.98 \frac{g}{mol} \times \frac{6.022 \cdot 10^{23}}{mol}$$

to get $3.03 \cdot 10^{14}$ atoms. We can then use our known volume of our cell (28 cm³) to calculate the maximum AI density after ablation,

$$\frac{3.03 \cdot 10^{14} atoms}{28 cm^3}$$
And our result is
$$\frac{1.1 \cdot 10^{13} atoms}{cm^3}$$

References

(1) U.P.B. Sci. Bull., Series A, Vol. 70, Iss. 4, 2008