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S1. Singlet Fission

For a generalized excited state with occupied orbitals and unoccupied orbitals, we assume an 

electron-hole pair is created at sites  and  with spins  and , respectively. The excited 𝑟𝑒 𝑟ℎ 𝜎𝑒 𝜎ℎ

state wavefunction  can be expanded as the summation of ground state  over sites:Φ Φ0

Φ = ∑
𝑟𝑒,𝑟ℎ 

𝐶(𝑟𝑒,𝑟ℎ) ∑
𝜎𝑒, 𝜎ℎ

𝑎 ‒ (𝜎𝑒)𝑎 + (𝜎ℎ)Φ0(𝑟) #(𝑆1)

where  is the probability amplitude coefficient, 𝐶(𝑟𝑒,𝑟ℎ) = 𝑁 ‒ 1exp (𝑖(𝑘𝑒 ⋅ 𝑟𝑒 + 𝑘ℎ ⋅ 𝑟ℎ))

 and  are annihilation and creation operators of electrons and holes. The 𝑎 ‒ (𝜎𝑒) 𝑎 + (𝜎ℎ)

energy eigenvalue for this wavefunction is obtained through Schrodinger equation: 

. Expand the energy function about  and apply the effective mass 
𝐸 =

⟨Φ│𝐻│Φ⟩
⟨Φ│Φ⟩ 𝑘 = 0

approximation for both charge carriers, the expression of eigenvalue  reads:𝐸

𝐸 = 𝐸0 + 𝐸𝑔 +
𝑝2

𝑒

2𝑚 ∗
𝑒

+
𝑝2

ℎ

2𝑚 ∗
ℎ

‒
1

𝑁2∑
𝑟𝑒,𝑟ℎ

𝐶𝐸𝑒ℎ#(𝑆2)

 is the ground state energy,  is the optical band gap for bulk materials, and  &  (𝐸0 𝐸𝑔 𝑝𝑖 𝑚 ∗
𝑖

) denote the momenta and effective mass for electrons and holes, respectively. The 𝑖 = 𝑒, ℎ

last term  represents the interaction between the excited electron hole pair. With two-𝐸𝑒ℎ

center approximations, the interaction can be described with two types of energy integrals 

related to spin S: coulomb integral  as well as exchange integral 1, 2:𝐽𝑒ℎ 𝐾𝑒ℎ

𝐸𝑒ℎ = 𝐽𝑒ℎ ‒ (1 ‒ 𝑆)𝐾𝑒ℎ#(𝑆3)

𝐽𝑒ℎ = ∬|Φ0(𝑟1 ‒ 𝑟𝑒)|2 𝜅𝑒2

|𝑟1 ‒ 𝑟2|
|Φ0(𝑟2 ‒ 𝑟ℎ)|2 𝑑3𝑟1𝑑3𝑟2 #(𝑆4)

𝐾𝑒ℎ = ∬|Φ0(𝑟1 ‒ 𝑟𝑒)||Φ0(𝑟2 ‒ 𝑟𝑒)| 𝜅𝑒2

|𝑟1 ‒ 𝑟2|
|Φ0(𝑟1 ‒ 𝑟ℎ)||Φ0(𝑟2 ‒ 𝑟ℎ)| 𝑑3𝑟1𝑑3𝑟2#(𝑆5)

Here we change the variable , , considering that  and using 𝑟 '
1 = 𝑟1 ‒ 𝑟𝑒 𝑟 '

2 = 𝑟2 ‒ 𝑟ℎ

|𝑟 '
1 ‒ 𝑟 '

2|
|𝑟𝑒 ‒ 𝑟ℎ|

“1

Haken’s approximation applied for Wannier excitons that 



where  is the static dielectric constant of the 
∫|Φ0(𝑟 '

1)|2 𝑑3𝑟 '
1 = ∫|Φ0(𝑟 '

2)|2 𝑑3𝑟 '
2 ≈

1
𝜀

 
𝜀

solid3,  can be simplified as: . Unlike , there is a lack of analytical 𝐽𝑒ℎ
𝐽𝑒ℎ ≈

𝜅𝑒2

𝜀|𝑟𝑒 ‒ 𝑟ℎ| 𝐽𝑒ℎ

simplification for the exchange term . However, from a qualitative analysis, it makes sense 𝐾𝑒ℎ

that the exchange should also have a negative scaling with respect to the distance between 

electron and holes. For Wannier excitons we can approximate  using similar structure of 𝐾𝑒ℎ

 by adding a ratio : 2. Combining these interaction terms and 𝐽𝑒ℎ 𝛼(𝑟𝑒,𝑟ℎ)
𝐾𝑒ℎ ≈

𝜅𝑒2

𝛼𝜀|𝑟𝑒 ‒ 𝑟ℎ|

applying hydrogen atom model for electrons and holes by using center of mass , relative 𝑅

coordinate  and reduced mass , the last three terms in Eq (S2) can be considered as energy 𝑟𝑒ℎ 𝜇

operator of an electron- hole pair. Since the ground state energy as well as bandgap for bulk 
materials can be treated as a constant, we can reformulate the wavefunction and Hamiltonian 
applying hydrogen model:

Φ(𝑟𝑒,𝑟ℎ) = Φ(𝑅,𝑟𝑒ℎ) =
1
𝑉

exp (𝑖 
𝑃 ⋅ 𝑅

ℏ )𝜙𝑛(𝑟𝑒ℎ)#(𝑆6)

𝐻 = 𝐸0 + 𝐸𝑔 +
𝑃2

2𝑀
‒

ℏ2∇2

2𝜇
‒

𝜅𝑒2

𝜀'(𝑆)𝑟𝑒ℎ

#(𝑆7)

where  follows from Eq (S3). The formulation of wavefunction and 
𝜀'(𝑆) = 𝜀[1 ‒

(1 ‒ 𝑆)
𝛼

] ‒ 1

Hamiltonian naturally separates the variable, hence the we can solve the spin related energy 
eigenvalue of hydrogenic energy state for electron-hole pairs from separated Schrodinger 
equation:

[ ‒
ℏ2∇2

2𝜇
‒

𝜅𝑒2

𝜀'(𝑆)𝑟𝑒ℎ
]𝜙𝑛(𝑟𝑒ℎ) = 𝐸𝑛(𝑆)𝜙𝑛(𝑟𝑒ℎ)#(𝑆8)

Giving eigenvalue as: 

𝐸𝑛(𝑆) =‒
𝜇𝑒4𝜅2

2ℏ2𝜀'(𝑆)2

1

𝑛2
#(𝑆9)

S2. Physical error detail

For orbit-related properties, the physical error should consider 3 parts: the mean absolute error, 
i.e., the L1 distance from prediction value to ground-truth value; the L1 distance between of 



predicted band gap  and ; the punishment for non-physical reliable prediction, �̂�𝑔𝑎𝑝 �̂�𝐻𝑂𝑀𝑂 ‒  �̂�𝐿𝑈𝑀𝑂

i.e., the predicted  is larger than . The punishment is the L1 distance from the �̂�𝐿𝑈𝑀𝑂 �̂�𝐻𝑂𝑀𝑂

average band gap of all molecules  to the ground truth band gap  of this molecule. The �̅�𝑔𝑎𝑝 𝜀𝑔𝑎𝑝

physical error can be written as: 

𝑒𝑟𝑟(𝜀𝑔𝑎𝑝) = |�̂�𝑔𝑎𝑝 ‒ 𝜀𝑔𝑎𝑝| +  |�̂�𝑔𝑎𝑝 ‒ (�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂))|𝜀𝑔𝑎𝑝 ‒ �̅�𝑔𝑎𝑝|

𝑒𝑟𝑟(𝜀𝐻𝑂𝑀𝑂)

= |�̂�𝐻𝑂𝑀𝑂 ‒ 𝜀𝐻𝑂𝑀𝑂| +  |�̂�𝑔𝑎𝑝 ‒ (�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂))|𝜀𝐻𝑂𝑀𝑂 ‒ �̅�𝐻𝑂𝑀𝑂

|

𝑒𝑟𝑟(𝜀𝐿𝑈𝑀𝑂)

= |�̂�𝐿𝑈𝑀𝑂 ‒ 𝜀𝐿𝑈𝑀𝑂| +  |�̂�𝑔𝑎𝑝 ‒ (�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝐿𝑈𝑀𝑂 ‒ �̂�𝐻𝑂𝑀𝑂))|𝜀𝐿𝑈𝑀𝑂 ‒ �̅�𝐿𝑈𝑀𝑂

|

Similarly, the physical error for excited energy properties can be defined. The punishment is 
given to the prediction that predicted singlet energy is lower than triplet energy. 

𝑒𝑟𝑟(𝐸𝑓) = |�̂�𝑓 ‒ 𝐸𝑓| +  |�̂�𝑓 ‒ (�̂�𝑆 ‒ 2�̂�𝑇)| +  | ̂Δ𝐸 ‒ (�̂�𝑆 ‒ �̂�𝑇)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝑆 ‒ �̂�𝑇))|𝐸𝑓 ‒ �̅�𝑓|

𝑒𝑟𝑟(𝐸𝑆) = |�̂�𝑆 ‒ 𝐸𝑆| +  |�̂�𝑓 ‒ (�̂�𝑆 ‒ 2�̂�𝑇)| +  | ̂Δ𝐸 ‒ (�̂�𝑆 ‒ �̂�𝑇)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝑆 ‒ �̂�𝑇))|𝐸𝑆 ‒ �̅�𝑆|

𝑒𝑟𝑟(𝐸𝑓𝑇) = |�̂�𝑇 ‒ 𝐸𝑇| +  |�̂�𝑓 ‒ (�̂�𝑆 ‒ 2�̂�𝑇)| +  | ̂Δ𝐸 ‒ (�̂�𝑆 ‒ �̂�𝑇)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝑆 ‒ �̂�𝑇))|𝐸𝑇 ‒ �̅�𝑇|

𝑒𝑟𝑟(Δ𝐸) = | ̂Δ𝐸 ‒ Δ𝐸| +  |�̂�𝑓 ‒ (�̂�𝑆 ‒ 2�̂�𝑇)| +  | ̂Δ𝐸 ‒ (�̂�𝑆 ‒ �̂�𝑇)| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂�𝑆 ‒ �̂�𝑇))|Δ𝐸 ‒ ̅Δ𝐸|

Based on the energy constraint mentioned above, we can define the physical error of the error 
as the L1 distance between predicted energy and ground truth value plus the punishment if the 
predicted values violate the physical constraint. 

Physical Error function for internal energy :𝑈

𝑒𝑟𝑟(𝑈) = |�̂� ‒ 𝑈| +
1
2

(1 ‒ 𝑠𝑔𝑛(�̂� ‒ �̂�))|𝑈 ‒ �̅�| 

Physical Error function for internal energy at 0K :𝑈0

𝑒𝑟𝑟(𝑈0) = |�̂�0 ‒ 𝑈0| +
1
2(1 ‒ 𝑠𝑔𝑛(�̂� ‒ �̂�0))|𝑈0 ‒ �̅�0| 

Physical Error function for free energy :𝐺



𝑒𝑟𝑟(𝐺) = |�̂� ‒ 𝐺| +
1
2

(1 ‒ 𝑠𝑔𝑛(�̂� ‒ �̂�))|𝐺 ‒ �̅�| 

S3. Ratio of non-physical reliable prediction.

Table S1 shows the percentage to non-physical reliable prediction, i.e., the prediction violates the 
physical correlations in the paper. “Y” represents the model with catalyst, while “N” represents 
models without catalyst. The column “ ” represents the prediction violates the physical 𝑈

correlation for internal energy  introduced in the paper, the column “orbit” represents the 𝑈

prediction violates the physical correlation for orbital energy, the column “excited” represents the 
prediction violates the physical correlation for excited-state energy, and the column “all” 
represents the prediction violates any one or more physical correlations we introduced. 



Table S1: The ratio of non-physical reliable prediction from various model. (Better is in bold).

Model Catalyst 𝑈 𝑈0 𝐺 orbit excited all
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GCN4
N 46.79% 43.75% 0.01% 0.00% 0.23% 90.55%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GAT5
N 44.92% 45.17% 0.00% 0.00% 0.15% 89.93%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GIN6
N 46.98% 41.41% 0.08% 0.00% 0.13% 88.33%
Y 0.00% 0.00% 0.00% 0.16% 0.00% 0.16%

ChebyNet7
N 22.31% 68.33% 9.84% 0.00% 0.00% 87.68%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GGNN8
N 45.59% 44.27% 0.49% 0.00% 0.17% 89.80%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MPNN9
N 44.36% 42.04% 0.01% 0.00% 0.22% 86.30%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RGCN10
N 42.45% 42.78% 0.01% 0.00% 0.26% 85.22%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

SchNet11
N 55.26% 35.35% 5.53% 0.00% 0.22% 84.10%

S4. Deep learning details

Besides we used above, we apply the catalyst to 8 GNN models, including graph convolutional 
networks4 (GCN), graph attention network5 (GAT), graph isomorphism net6 (GIN), ChebyNet7, 
gated graph neural network8 (GGNN), message passing neural network9 (MPNN), relational graph 
convolutional network10 (RGCN), and SchNet11. The result is shown in Table S2.

The code is available at https://github.com/yippp/CatDNNs.



Table S2: The physical error for various properties with/without catalyst. In column “Catalyst”, 

“N” represents no catalyst endorsed, while “Y” represents catalyst endorsed. Better is in bold. All 

Properties with unit eV.

Model Catalyst 𝑈 𝑈0 𝐻 𝐺 𝜀𝑔𝑎𝑝 𝜀𝐻𝑂𝑀𝑂 𝜀𝐿𝑈𝑀𝑂 𝐸𝑆 𝐸𝑇 Δ𝐸 𝐸𝑓

Y 0.072 0.072 0.072 0.074 0.002 0.001 0.002 0.069 0.057 0.045 0.079
GCN

N 2.850 0.118 0.088 0.087 0.002 0.001 0.002 0.076 0.069 0.054 0.092

Y 0.066 0.066 0.066 0.068 0.003 0.002 0.003 0.091 0.065 0.064 0.100
GAT

N 2.751 0.124 0.086 0.088 0.002 0.002 0.002 0.081 0.070 0.057 0.095

Y 0.068 0.070 0.068 0.071 0.003 0.002 0.003 0.090 0.070 0.062 0.103
GIN

N 2.839 0.118 0.087 0.085 0.003 0.002 0.002 0.087 0.074 0.062 0.100

Y 0.098 0.109 0.098 0.104 0.012 0.011 0.010 0.278 0.169 0.212 0.269
ChebyNet

N 1.525 0.163 0.086 0.102 0.010 0.010 0.009 0.418 0.313 0.387 0.410

Y 0.065 0.065 0.065 0.066 0.004 0.003 0.004 0.105 0.075 0.075 0.117
GGNN

N 2.813 0.116 0.080 0.088 0.004 0.004 0.004 0.129 0.098 0.099 0.146

Y 0.072 0.076 0.072 0.074 0.002 0.002 0.002 0.054 0.026 0.050 0.060
MPNN

N 2.614 0.119 0.091 0.094 0.002 0.002 0.002 0.061 0.035 0.060 0.074

Y 0.058 0.059 0.057 0.061 0.003 0.003 0.003 0.079 0.040 0.068 0.082
RGCN

N 2.490 0.113 0.081 0.080 0.001 0.001 0.001 0.035 0.025 0.036 0.047

Y 0.075 0.079 0.075 0.081 0.003 0.003 0.003 0.086 0.053 0.081 0.111
SchNet

N 3.235 0.125 0.075 0.084 0.001 0.001 0.001 0.031 0.025 0.032 0.043

We use machine learning framework PyTorch12 1.8, geometric deep learning extension library 
PyTorch Geometric13 1.7, and wrapper PyTorch Lightning14 to build all models. All the experiments 
are run on the server with graphic card NVIDIA GeForce RTX 2080 Ti (11 GB graphic memory). The 
operating system is Ubuntu 18.04 LTS, with graphic card driver version 440.82, and CUDA version 
10.2. 

We use 90% of the data in QM-symex15 for training, and the remaining 10% for testing. The dataset 
is split by random shuffle to ensure the training and testing set distribution is the same. The DFT 
calculation level of QM-symex is B3LYP/6-31G with Symm=VeryLoose. The number of transition 
states is 10, which means Nstates=10 in Gaussian09.

We use multitask version of Adam optimizer16 based on stochastic gradient descent to optimize 
the parameters of the DNN model. The main idea of multitask Adam optimizer17 is that for each 
predicted property, maintain a group of parameters, and switch to the corresponding group of 



parameters when optimizing one of the properties. During optimization, the loss for only one 
property is back-forwarding during each optimization iteration. 

For all models, the initial learning rate is set to 0.001, the batch size is set to 32 so that all models 
can be trained using single graphic card. The learning will multiply 0.8 every 20 batches, and the 
total training procedure containing 300 epochs.

The detail hyperparameters for each model is listed below:



ChebyNet:

Node_hidden_dim 128
Polynomial_order 5
Num_step_prop 6
Num_step_set2set 6

GAT:

Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6

GCN:

Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6

GGNN:

Node_hidden_dim 64
Num_step_prop 3

GIN:

Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6

MPNN:

Node_hidden_dim 48
Edge_hidden_dim 48
Num_step_message_passsin
g

3

Num_step_set2set 6
RGCN:

Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6

SchNet:

Hidden_channels 128
Num_filters 128
Num_interactions 6
Num_gaussians 50
Cutoff 10.0
Readout mean

S5. Extension to machine learning model



This catalyst concept also works well on some machine learning methods. To prove this idea, 
we use Least Absolute Shrinkage and Selection Operator18 (Lasso) to perform a prediction 

task on polarizability ( ) and electron mass ( ) and the catalyst in this task is PBE band gap 𝑎 𝑚𝑒

database. The feature used for training includes crystal features from C2DB database19 and 
element features. All the used features are presented in Table S3. Figure S1 denotes the 
process of how the training is improved through catalyst. To show the difference, we use 

raw features as training data to predict  and  directly at first. The coefficient of 𝛼 𝑚𝑒

determination ( ) of  and  predictions are 0.84 and 0.51, the detailed data in Table S4. 𝑅2 𝑎 𝑚𝑒

The catalysis process here is defined as adding a PBE bandgap ( ) prediction between 𝐸𝑔𝑎𝑝

raw features and , . Since there are sure to be a negative correlation between  and , 𝛼 𝑚𝑒 𝛼 𝐸2
𝑔

and a positive correlation between  and , we use raw features to predict  firstly. 𝑚𝑒 𝐸𝑔 𝐸𝑔𝑎𝑝

The  is predicted with =0.95, which is a satisfying result. Next the  and  are fitted 𝐸𝑔𝑎𝑝 𝑅2 𝑘 𝑥

with correlation  and  where ,  are coefficients and ,  are 
𝑎~𝑘

1

𝐸 2
𝑔𝑎𝑝

+ 𝑝
𝑚𝑒~𝑥𝐸𝑔 + 𝑞 𝑘 𝑥 𝑝 𝑞

minor features that contribute little to the prediction. The result  are increased to 0.91 𝑅2

and 0.64 comparing to previous prediction. This simple attempt strengthens the effect of the 
physical-endorsed catalyst in the machine learning process.

Figure S1: A sketch of catalyst-improved machine learning on polarizability and 
electron mass prediction. The catalyst in this case is band gap energy. 



Table S3: Used features for polarizability and electron mass prediction.

Crystal feature Element feature
Basis Vector Ionicity

Heat of Formation Period Number
Total Energy Specific Heat

Area Density
Mass Curie Point

Charge Average Covalent Radius
Volume Electron Affinity

PBE Bandgap Boiling Point
Atom Radius

Absolute Boiling Point
Absolute Melting Point

Atom Mass
Number of Atoms

Critical Temperature
Critical Pressure
Heat of Fusion

Heat of Vaporization
Melting Point

Thermal Conductivity
Brinell Hardness
Vickers Hardness

Bulk Modulus
Shear Modulus
Young Modulus

Electron Negativity
Number of Outer Electron

Total Nuclear Charge
State

Table S4: The prediction performance. (R2 is higher better, MAE is lower better, best is in bold).

Property 𝑅2 MAE
𝐸𝑔𝑎𝑝 0.95 0.21 eV
𝑚𝑒 0.51 0.19   𝑚𝑒

 (w/ catalyst)𝑚𝑒 0.65 0.17 𝑚𝑒

𝑎 0.84 1.08 Ang
 (w/ catalyst)𝑎 0.91 0.84 Ang

S6. Singlet fission prediction result

In Table S5, Y in column “Catalyst” represents the model with catalyst, while N represents 
models without catalyst. True positive (TP) is the number of predictions that the molecule 
actually has fission, and the prediction is fission and physical-reliable in all physical correlations. 
True negative (TN) is the number of predictions that the molecule actually does not have fission, 



and the prediction is non-fission and physical-reliable in all physical correlations. False positive 
(FP) is the number of predictions that the molecule actually does not have fission, and the 
prediction is fission and physical-reliable in all physical correlations. False negative (FN) is the 
number of predictions that the molecule actually has fission, and the prediction is non-fission 
and physical-reliable in all physical correlations. Column “valid” represents the number of valid 
predictions, which is physical-reliable, i.e., the sum-up of TP, TN, FP, and FN. Note that the total 
number of samples for testing is 15030.

Precision in Figure 4 is to represent how precise the prediction in all “fission” predictions, i.e., the 
percentage of true positive (physical reliable) samples in all “fission” predictions (no matter 
whether the prediction follows physical correlations).

Accuracy in Table S5 measures how accurate all predictions, i.e., the ratio of TP and TN in all 
predictions.

Table S5: The detailed prediction results for singlet fission. (Better in bold)

Model Catalyst TP TN FP FN Valid Accuracy
Y 3252 10738 474 566 15030 93.1%

GAT
N 253 1302 15 11 1581 10.4%
Y 3405 10693 519 413 15030 93.8%

GCN
N 273 1452 12 17 1754 11.5%
Y 3407 10886 326 411 15030 95.1%

GGNN
N 507 1934 27 44 2512 16.2%
Y 3390 10595 617 428 15030 93.1%

GIN
N 250 1354 14 21 1639 10.7%
Y 3639 11055 157 179 15030 97.8%

MPNN
N 350 1613 27 24 2014 13.1%
Y 3425 10769 443 393 15030 94.4%

ChebyNet
N 272 1152 11 15 1450 9.5%
Y 3555 10949 263 263 15030 96.5%

RGCN
N 339 1891 14 11 2255 14.8%
Y 1642 11100 112 2176 15030 84.8%

SchNet
N 109 572 2 4 687 4.5%

S7. Results on QM9

The results like QM-symex shown in Section S3 and S6 are shown below.



Table S6: The ratio of non-physical reliable prediction from various models in QM9. (Better is 
in bold).

Model Catalyst 𝑈 𝑈0 𝐺 orbit excited all
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GCN
N 78.11% 32.89% 23.86% 0.00% 0.02% 92.40%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GAT
N 63.19% 46.33% 46.20% 0.00% 0.00% 93.67%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GIN
N 98.37% 51.40% 87.60% 0.00% 0.00% 99.40%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ChebyNet
N 70.24% 59.43% 32.17% 0.00% 0.00% 92.85%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GGNN
N 0.42% 5.88% 0.04% 0.00% 0.01% 6.27%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MPNN
N 75.62% 0.95% 34.32% 0.00% 0.00% 80.59%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RGCN
N 54.97% 59.67% 54.53% 0.00% 0.02% 90.32%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

SchNet
N 94.08% 19.44% 57.18% 0.00% 0.06% 98.77%

Table S7: The detailed prediction results for singlet fission in QM9. (Better in bold)

Model Catalyst TP TN FP FN Valid Accuracy
Y 39 13136 8 14 13197 99.8%

GAT
N 0 1002 0 1 1003 7.6%
Y 47 13135 9 6 13197 99.9%

GCN
N 0 836 0 0 836 6.3%
Y 42 13136 8 11 13197 99.9%

GGNN
N 0 79 0 0 79 0.6%
Y 37 13136 8 16 13197 99.8%

GIN
N 0 943 0 0 943 7.2%
Y 44 13136 8 9 13197 99.9%

MPNN
N 31 12321 7 11 12370 93.6%
Y 43 13140 4 10 13197 99.9%

ChebyNet
N 0 2562 0 0 2562 19.4%
Y 45 13137 7 8 13197 99.9%

RGCN
N 0 1275 2 1 1278 9.7%
Y 47 13107 37 6 13197 99.7%

SchNet
N 0 162 0 0 162 1.2%

S8. Generalization experiment results

The total number of molecules with different structures is 4906 in the Perkinson et al. screened SF 



molecules dataset20. The molecules contain elements H, C, O, N, S, F, Cl, Br, B, P, Si, and the 
molecule size can reach 150. Since the molecule is larger than QM-symex (no more than 90 atoms), 
the elements are more various, and the training set (4404 molecules) is much smaller, the 
prediction difficulty in predicting SF in this dataset is much higher compared with QM-symex and 
QM9. We use the method as described in QM-symex15 to calculate all properties needed in the 
catalyst. The models and training process have the same configuration as in Section S4, except the 
batch size is set to 16. Since the molecules are much larger, the graphic memory is not enough for 
some models if the batch size is set to 32. The prediction result for Perkinson et al.’s dataset using 
various models is shown in Table S8, S9, and S10.

Table S8: The physical error for various properties with/without catalyst. In column 
“Catalyst”, “N” represents no catalyst endorsed, while “Y” represents catalyst endorsed. Better is 
in bold.

𝑈 𝑈0 𝐻 𝐺 𝜀𝑔𝑎𝑝 𝜀𝐻𝑂𝑀𝑂 𝜀𝐿𝑈𝑀𝑂 𝐸𝑆 𝐸𝑇 Δ𝐸 𝐸𝑓
Model Catalyst

eV eV eV eV eV eV eV eV eV eV eV

Y 79.842 79.842 79.842 79.848 0.255 0.254 0.259 0.105 0.077 0.067 0.109
GCN

N 994.778 697.599 68.457 968.204 0.255 0.254 0.259 0.126 0.102 0.099 0.138

Y 70.791 70.791 70.791 70.791 0.255 0.256 0.260 0.146 0.096 0.097 0.142
GAT

N 705.417 832.032 94.017 803.487 0.254 0.253 0.258 0.208 0.164 0.162 0.217

Y 97.013 97.013 97.013 97.013 0.254 0.254 0.259 0.148 0.108 0.098 0.159
GIN

N 906.400 816.018 86.746 890.006 0.255 0.255 0.259 0.203 0.157 0.157 0.216

Y 14.813 14.152 14.815 13.716 0.255 0.255 0.259 0.211 0.157 0.142 0.220
ChebyNet

N 1,081.176 736.652 21.086 786.228 0.255 0.254 0.259 0.313 0.251 0.233 0.319

Y 245.362 245.362 245.362 245.366 0.254 0.255 0.259 0.215 0.148 0.133 0.213
GGNN

N 826.467 1,025.906 232.697 1,046.386 0.260 0.260 0.265 0.262 0.207 0.188 0.274

Y 39.136 39.131 39.136 39.145 0.255 0.255 0.259 0.186 0.138 0.126 0.204
MPNN

N 595.265 909.041 33.943 902.823 0.254 0.254 0.258 0.248 0.205 0.181 0.270

Y 59.300 59.303 59.300 59.260 0.256 0.255 0.260 0.090 0.057 0.067 0.097
RGCN

N 626.588 1,044.292 70.394 755.135 0.255 0.254 0.259 0.155 0.128 0.120 0.167

Y 93.346 93.344 93.346 93.440 0.255 0.254 0.259 0.129 0.090 0.093 0.135
SchNet

N 773.359 821.539 73.966 764.310 0.254 0.254 0.259 0.171 0.134 0.144 0.182



Table S9: The ratio of non-physical reliable prediction. (Better is in bold).

Model Catalyst U U0 G orbit excited all

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ChebyNet

N 45.42% 44.02% 49.00% 0.00% 0.00% 83.07%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GAT

N 61.95% 59.56% 58.96% 0.00% 0.00% 96.02%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GCN

N 42.03% 58.17% 58.96% 0.00% 0.00% 90.44%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GGNN

N 30.48% 36.45% 35.86% 0.00% 0.00% 62.75%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GIN

N 55.98% 32.87% 41.63% 0.00% 0.00% 84.26%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MPNN

N 44.42% 63.15% 56.57% 0.00% 0.00% 93.43%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RGCN

N 17.73% 53.19% 26.49% 0.00% 0.00% 69.32%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SchNet

N 56.97% 60.96% 55.58% 0.00% 0.00% 91.43%

Table S10: The detailed prediction results for singlet fission. (Better in bold)

Model Catalyst TP TN FP FN Valid Accuracy
Y 16 475 5 6 502 97.8%

GAT
N 0 18 0 2 20 3.6%
Y 15 477 3 7 502 98.0%

GCN
N 5 42 0 1 48 9.4%
Y 0 480 0 22 502 95.6%

GGNN
N 0 184 0 3 187 36.7%
Y 7 478 2 15 502 96.6%

GIN
N 0 78 0 1 79 15.5%
Y 5 480 0 17 502 96.6%

MPNN
N 0 33 0 0 33 6.6%
Y 17 477 3 5 502 98.4%

ChebyNet
N 3 80 1 1 85 16.5%
Y 17 477 3 5 502 98.4%

RGCN
N 4 148 1 1 154 30.3%
Y 3 480 0 19 502 96.2%

SchNet
N 3 40 0 0 43 8.6%

S9. Detailed discussion

We could give some analysis for Cat-DNNs scheme from the deep learning aspect. Traditional MTL 
methods will not consider the correlation of the predicted properties explicitly. Researchers hope 



to find the correlation among properties on the DNN model itself, even though the DNN with one 
output layer with “squashing” activation can approximate any Borel measurable function21. 
However, limited by the cragged loss curve and stochastic gradient descent optimization method, 
more complex DNN architectures are needed to obtain a better approximation for different tasks. 

On quantum-mechanic tasks like molecular properties prediction, the correlation of some 
properties is easy to be theoretically determined as introduced above. The endorsed catalysts 
reduce the search space of the DNN models, so that the loss can be easier optimized to a better 

minima. For example, to predict energy properties , the traditional models need to find 𝑈, 𝑈0,𝐻, 𝐺

out the correlation between energy and molecular structure 4 times, some of the model 
parameters are duplicated, and the fitting ability is limited. Added the catalysts, the correlation 
of energy and molecular could be only considered once and the saved parameters can be used to 

fit the difference of various properties, like the gap between  and , which is much easier than 𝑈0 𝑈
fitting the correlation of molecular 3D structure to energy property once more. 
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