Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2021

Supplementary of The Catalysis Deep Neural Networks
(Cat-DNNs) in Singlet Fission Property Prediction

Shugian Ye, Jiechun Liang, Xi Zhu*

School of Science and Engineering (SSE), Shenzhen Institute of Artificial

Intelligence and Robotics for Society (AIRS)

The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen)
14-15F, Tower G2, Xinghe World, Rd Yabao, Longgang District,

Section S1.

Section S2.

Section S3.

Section S4.

Section S5.

Section S6.

Section S7.

Section S8.

Shenzhen, Guangdong, China, 518172
Email: zhuxi@cuhk.edu.cn

Singlet Fission

Physical error detail

Ratio of non-physical reliable prediction
Deep learning details

Extension to machine learning model
Singlet fission prediction result

Results on QM9

Generalization experiment results


mailto:zhuxi@cuhk.edu.cn

S1. Singlet Fission

For a generalized excited state with occupied orbitals and unoccupied orbitals, we assume an

g

electron-hole pair is created at sites "e and "h with spins “e and Gh, respectively. The excited

state wavefunction P can be expanded as the summation of ground state P over sites:

b= Z C(ryry) Z a”(0,)a™ (a,)®o(r) #(S1)
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where is the probability amplitude coefficient,

- +
a (o) and ¢ () are annihilation and creation operators of electrons and holes. The

energy eigenvalue for this wavefunction is obtained through Schrodinger equation:
_(@|H])
(P|P) . Expand the energy function about k=0 and apply the effective mass
approximation for both charge carriers, the expression of eigenvalue E reads:
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Eq is the ground state energy, Eg is the optical band gap for bulk materials, and Pig M (

i=e, h) denote the momenta and effective mass for electrons and holes, respectively. The

last term Een represents the interaction between the excited electron hole pair. With two-

center approximations, the interaction can be described with two types of energy integrals

related to spin S: coulomb integraI]eh as well as exchange integral Keh“:

E =] (1-S)K,,#(53)
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"1=T17Te, T2 =727 Th considering that |re =74l and using

Here we change the variable

Haken's approximation applied for Wannier excitons that



flcb rl |2d3r1 f|CI> rz |2d3r2

]ehz

solid3, Jen can be simplified as:

Ewhere € is the static dielectric constant of the

K€2

€|re_rh|. Unlike ]eh, there is a lack of analytical

simplification for the exchange term Keh. However, from a qualitative analysis, it makes sense

that the exchange should also have a negative scaling with respect to the distance between

. . . K . .
electron and holes. For Wannier excitons we can approximate "~ eh using similar structure of

Ke2

eh =
Jen by adding a ratio a(re,rh): a'£|re—rh|2. Combining these interaction terms and
applying hydrogen atom model for electrons and holes by using center of mass R relative
coordinate " eh and reduced mass X, the last three terms in Eq (S2) can be considered as energy

operator of an electron- hole pair. Since the ground state energy as well as bandgap for bulk
materials can be treated as a constant, we can reformulate the wavefunction and Hamiltonian
applying hydrogen model:
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where a follows from Eq (S3). The formulation of wavefunction and

Hamiltonian naturally separates the variable, hence the we can solve the spin related energy

eigenvalue of hydrogenic energy state for electron-hole pairs from separated Schrodinger

equation:
h2v? ke’
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Giving eigenvalue as:
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S2. Physical error detail

For orbit-related properties, the physical error should consider 3 parts: the mean absolute error,
i.e., the L1 distance from prediction value to ground-truth value; the L1 distance between of



predicted band gap €gap and EHomo = ELUMO; the punishment for non-physical reliable prediction,
i.e., the predicted ELumo js larger than €HomO, The punishment is the L1 distance from the

average band gap of all molecules €gap to the ground truth band gap €gap of this molecule. The

physical error can be written as:

. . . . 1 . o
err(€yqpy) = |5gap - Sgapl + |5gap - (2Lumo - 5H0M0)| + 5(1 = sgn(&umo - SHOMO))|5gap = €gapl

err(Egomo)

A

. . 1 . .
€gap ~ (ELUMO - €HOM0)| + 5(1 - Sgn(eLUMO - 5H0M0))

= |nomo = Enomol +

err(Eymo)

. R . n 1 . n
= |£LUMO - ELUM0| + |5gap - (SLUMO - 5H0M0)| + 5(1 - Sgn(SLUMO - S110M0))|

Similarly, the physical error for excited energy properties can be defined. The punishment is
given to the prediction that predicted singlet energy is lower than triplet energy.

1 i,
err(Ep) = |Eg- Ef| + |E; - (Eg-2E7)| + |8E - (Es-Ep)| + E(l -sgn(Eg-Ep))|Ef - B/l
1 _
err(Eg) = |Eg - Eg| + |Ef - (Es-2E;)| + |&E - (Es - Ey)| +§(1 -sgn(Eg-Ey))|Es - Egl
1 .
err(Epp) = |Ep - Eg| + |E; - (Eg-2E7)| + |&E - (Es-Ep)| + E(l -sgn(Eg-Er))|Ep - Byl

err(AE) = |85 - AF| + [B, (B~ 2E7)| + |85 ~ By~ Bp)| + (1 - sgn(Eg - By)) 1ok - 86

Based on the energy constraint mentioned above, we can define the physical error of the error
as the L1 distance between predicted energy and ground truth value plus the punishment if the
predicted values violate the physical constraint.

Physical Error function for internal energy U:

1 -
err(U)=|U-U| + 5(1 -sgn(ll - U))|U-T|
Physical Error function for internal energy at OK UO:

1
err(U,) = |UO - Uol + 5(1 - sgn(U - UO))|U0 - Ul

Physical Error function for free energy G:



err(G) = |G- G| + %(1 -sgn(H -G))|G - G|

S3. Ratio of non-physical reliable prediction.

Table S1 shows the percentage to non-physical reliable prediction, i.e., the prediction violates the
physical correlations in the paper. “Y” represents the model with catalyst, while “N” represents
models without catalyst. The column “U” represents the prediction violates the physical
correlation for internal energy U introduced in the paper, the column “orbit” represents the
prediction violates the physical correlation for orbital energy, the column “excited” represents the
prediction violates the physical correlation for excited-state energy, and the column “all”
represents the prediction violates any one or more physical correlations we introduced.



Table S1: The ratio of non-physical reliable prediction from various model. (Better is in bold).

Model | Catalyst U Uy G orbit | excited all
GON® Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N 46.79% | 43.75% | 0.01% | 0.00% | 0.23% | 90.55%
GATS Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N 44.92% | 45.17% | 0.00% | 0.00% | 0.15% | 89.93%
GING Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N 46.98% | 41.41% | 0.08% | 0.00% | 0.13% | 88.33%
ChebyNet? Y 0.00% | 0.00% | 0.00% | 0.16% | 0.00% | 0.16%
ebyNe
y N 22.31% | 68.33% | 9.84% | 0.00% | 0.00% | 87.68%
GGNNE Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N 45.59% | 44.27% | 0.49% | 0.00% | 0.17% | 89.80%
MPNN® Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
N 44.36% | 42.04% | 0.01% | 0.00% | 0.22% | 86.30%
RGCN10 Y 0.00% 0.00% | 0.00% | 0.00% | 0.00% 0.00%
N 42.45% | 42.78% | 0.01% | 0.00% | 0.26% | 85.22%
schNetl! Y 0.00% 0.00% | 0.00% | 0.00% | 0.00% 0.00%
chNe
N 55.26% | 35.35% | 5.53% | 0.00% | 0.22% | 84.10%

S4. Deep learning details

Besides we used above, we apply the catalyst to 8 GNN models, including graph convolutional
networks* (GCN), graph attention network® (GAT), graph isomorphism net® (GIN), ChebyNet’,
gated graph neural network® (GGNN), message passing neural network® (MPNN), relational graph
convolutional network® (RGCN), and SchNet!!, The result is shown in Table S2.

The code is available at https://github.com/yippp/CatDNNs.



Table S2: The physical error for various properties with/without catalyst. In column “Catalyst”,
“N” represents no catalyst endorsed, while “Y” represents catalyst endorsed. Better is in bold. All

Properties with unit eV.

Model Catalyst U Uy H G €gap €gomo | €Lumo Eg Er AE E,
Y 0.072 0.072 0.072 | 0.074 | 0.002 0.001 0.002 0.069 0.057 0.045 0.079
N 2.850 0.118 0.088 0.087 0.002 0.001 0.002 0.076 0.069 0.054 0.092
Y 0.066 | 0.066 0.066 | 0.068 0.003 0.002 0.003 0.091 0.065 0.064 0.100
N 2.751 0.124 0.086 0.088 0.002 0.002 0.002 0.081 0.070 0.057 0.095
Y 0.068 | 0.070 0.068 | 0.071 0.003 0.002 0.003 0.090 0.070 0.062 0.103
N 2.839 0.118 0.087 0.085 0.003 0.002 0.002 0.087 0.074 0.062 0.100
Y 0.098 0.109 0.098 0.104 0.012 0.011 0.010 0.278 0.169 0.212 0.269
ChebyNet
N 1.525 0.163 0.086 0.102 0.010 0.010 0.009 0.418 0.313 0.387 0.410
Y 0.065 0.065 0.065 0.066 0.004 0.003 0.004 0.105 0.075 0.075 0.117
GGNN
N 2.813 0.116 0.080 0.088 0.004 0.004 0.004 0.129 0.098 0.099 0.146
Y 0.072 0.076 0.072 0.074 0.002 0.002 0.002 0.054 0.026 0.050 0.060
MPNN
N 2.614 0.119 0.091 0.094 0.002 0.002 0.002 0.061 0.035 0.060 0.074
Y 0.058 0.059 0.057 0.061 0.003 0.003 0.003 0.079 0.040 0.068 0.082
RGCN
N 2.490 0.113 0.081 0.080 0.001 0.001 0.001 0.035 0.025 0.036 0.047
Y 0.075 0.079 0.075 0.081 0.003 0.003 0.003 0.086 0.053 0.081 0.111
SchNet
N 3.235 0.125 0.075 0.084 0.001 0.001 0.001 0.031 0.025 0.032 0.043

We use machine learning framework PyTorch!? 1.8, geometric deep learning extension library
PyTorch Geometric!? 1.7, and wrapper PyTorch Lightning* to build all models. All the experiments
are run on the server with graphic card NVIDIA GeForce RTX 2080 Ti (11 GB graphic memory). The
operating system is Ubuntu 18.04 LTS, with graphic card driver version 440.82, and CUDA version
10.2.

We use 90% of the data in QM-symex?> for training, and the remaining 10% for testing. The dataset
is split by random shuffle to ensure the training and testing set distribution is the same. The DFT
calculation level of QM-symex is B3LYP/6-31G with Symm=VeryLoose. The number of transition
states is 10, which means Nstates=10 in Gaussian09.

We use multitask version of Adam optimizer!® based on stochastic gradient descent to optimize
the parameters of the DNN model. The main idea of multitask Adam optimizer?’ is that for each
predicted property, maintain a group of parameters, and switch to the corresponding group of




parameters when optimizing one of the properties. During optimization, the loss for only one

property is back-forwarding during each optimization iteration.

For all models, the initial learning rate is set to 0.001, the batch size is set to 32 so that all models
can be trained using single graphic card. The learning will multiply 0.8 every 20 batches, and the

total training procedure containing 300 epochs.

The detail hyperparameters for each model is listed below:



ChebyNet:

GAT:

GCN:

GGNN:

GIN:

MPNN:

RGCN:

SchNet:

Node_hidden_dim 128
Polynomial_order
Num_step_prop
Num_step_set2set
Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6
Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6
Node_hidden_dim 64
Num_step_prop 3
Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6
Node_hidden_dim 48
Edge_hidden_dim 48
Num_step_message_passsin | 3
g
Num_step_set2set 6
Node_hidden_dim 128
Num_step_prop 6
Num_step_set2set 6
Hidden_channels 128
Num_filters 128
Num_interactions 6
Num_gaussians 50
Cutoff 10.0
Readout mean

S5. Extension to machine learning model




This catalyst concept also works well on some machine learning methods. To prove this idea,
we use Least Absolute Shrinkage and Selection Operator'® (Lasso) to perform a prediction

task on polarizability (¢) and electron mass (mE) and the catalyst in this task is PBE band gap

database. The feature used for training includes crystal features from C2DB database!® and
element features. All the used features are presented in Table S3. Figure S1 denotes the
process of how the training is improved through catalyst. To show the difference, we use

raw features as training data to predict & and m directly at first. The coefficient of

2
determination (R") of @ and m predictions are 0.84 and 0.51, the detailed data in Table S4.
The catalysis process here is defined as adding a PBE bandgap (Egap) prediction between

2
raw features and &, Me_Since there are sure to be a negative correlation between & and Eg,

m

and a positive correlation between "¢ and Eg, we use raw features to predict Egap firstly.

2
The Eyap is predicted with R=0.95, which is a satisfying result. Next the k and * are fitted

1
a~k——+p

2
with correlation Egap and e ng * 4 where k X are coefficients and P, 4 are

2
minor features that contribute little to the prediction. The result R” are increased to 0.91

and 0.64 comparing to previous prediction. This simple attempt strengthens the effect of the
physical-endorsed catalyst in the machine learning process.

1
R o

R?=0.84 -
Egap R¢=0.91
A S
R?=0.51 R?=0.64

Figure S1: A sketch of catalyst-improved machine learning on polarizability and
electron mass prediction. The catalyst in this case is band gap energy.



Table S3: Used features for polarizability and electron mass prediction.

Crystal feature Element feature
Basis Vector lonicity
Heat of Formation Period Number
Total Energy Specific Heat
Area Density
Mass Curie Point
Charge Average Covalent Radius
Volume Electron Affinity
PBE Bandgap Boiling Point
Atom Radius

Absolute Boiling Point
Absolute Melting Point
Atom Mass
Number of Atoms
Critical Temperature
Critical Pressure
Heat of Fusion
Heat of Vaporization
Melting Point
Thermal Conductivity
Brinell Hardness
Vickers Hardness
Bulk Modulus
Shear Modulus
Young Modulus
Electron Negativity
Number of Outer Electron
Total Nuclear Charge
State

Table S4: The prediction performance. (R? is higher better, MAE is lower better, best is in bold).

Property R? MAE
Egap 0.95 0.21eV
m, 0.51 0.19 Me
Me (w/ catalyst) 0.65 0.17 e
a 0.84 1.08 Ang
a (w/ catalyst) 0.91 0.84 Ang

S6. Singlet fission prediction result

In Table S5, Y in column “Catalyst” represents the model with catalyst, while N represents
models without catalyst. True positive (TP) is the number of predictions that the molecule
actually has fission, and the prediction is fission and physical-reliable in all physical correlations.
True negative (TN) is the number of predictions that the molecule actually does not have fission,



and the prediction is non-fission and physical-reliable in all physical correlations. False positive
(FP) is the number of predictions that the molecule actually does not have fission, and the
prediction is fission and physical-reliable in all physical correlations. False negative (FN) is the
number of predictions that the molecule actually has fission, and the prediction is non-fission
and physical-reliable in all physical correlations. Column “valid” represents the number of valid
predictions, which is physical-reliable, i.e., the sum-up of TP, TN, FP, and FN. Note that the total

number of samples for testing is 15030.

Precision in Figure 4 is to represent how precise the prediction in all “fission” predictions, i.e., the
percentage of true positive (physical reliable) samples in all “fission” predictions (no matter
whether the prediction follows physical correlations).

Accuracy in Table S5 measures how accurate all predictions, i.e., the ratio of TP and TN in all

predictions.

Table S5: The detailed prediction results for singlet fission. (Better in bold)

Model Catalyst TP TN FP FN Valid Accuracy
GAT Y 3252 | 10738 | 474 | 566 15030 93.1%
N 253 1302 15 11 1581 10.4%
&N Y 3405 | 10693 | 519 | 413 15030 93.8%
N 273 1452 12 17 1754 11.5%
Y 3407 | 10886 | 326 | 411 15030 95.1%
GGNN N 507 1934 27 44 2512 16.2%
Y 3390 | 10595 | 617 | 428 15030 93.1%
GIN N 250 1354 14 21 1639 10.7%
Y 3639 | 11055 | 157 | 179 15030 97.8%
MPNN N 350 1613 27 24 2014 13.1%
Y 3425 | 10769 | 443 | 393 15030 94.4%

ChebyNet
N 272 1152 11 15 1450 9.5%
RGCN Y 3555 | 10949 | 263 | 263 15030 96.5%
N 339 1891 14 11 2255 14.8%
Y 1642 | 11100 | 112 | 2176 | 15030 84.8%
SchNet

N 109 572 2 4 687 4.5%

S7. Results on QM9

The results like QM-symex shown in Section S3 and S6 are shown below.



Table S6: The ratio of non-physical reliable prediction from various models in QM9. (Better is
in bold).

Model | Catalyst U Uy G orbit | excited all

GCN Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

N 78.11% | 32.89% | 23.86% | 0.00% | 0.02% | 92.40%

GAT Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

N 63.19% | 46.33% | 46.20% | 0.00% | 0.00% | 93.67%

GIN Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

N 98.37% | 51.40% | 87.60% | 0.00% | 0.00% | 99.40%

ChebvNet Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
ebyNe

Y N 70.24% | 59.43% | 32.17% | 0.00% | 0.00% | 92.85%

GGNN Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

N 0.42% 5.88% 0.04% | 0.00% | 0.01% 6.27%

MPNN Y 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.00%

N 75.62% | 0.95% | 34.32% | 0.00% | 0.00% | 80.59%

RGCN Y 0.00% 0.00% 0.00% | 0.00% | 0.00% 0.00%

N 54.97% | 59.67% | 54.53% | 0.00% | 0.02% | 90.32%

SchNet Y 0.00% 0.00% 0.00% | 0.00% | 0.00% 0.00%
chNe

N 94.08% | 19.44% | 57.18% | 0.00% | 0.06% | 98.77%

Table S7: The detailed prediction results for singlet fission in QM9. (Better in bold)

Model Catalyst TP TN FP | FN | Valid | Accuracy
GAT Y 39 13136 | 8 14 | 13197 | 99.8%
N 0 1002 0 1003 7.6%
aeN Y 47 13135 | 9 13197 | 99.9%
N 0 836 0 0 836 6.3%
Y 42 13136 | 8 11 | 13197 | 99.9%
GGNN
N 0 79 0 0 79 0.6%
GIN Y 37 13136 | 8 16 | 13197 | 99.8%
N 0 943 0 943 7.2%
Y 44 13136 | 8 13197 | 99.9%
MPNN
N 31 12321 | 7 11 | 12370 | 93.6%
Y 43 13140 4 10 | 13197 99.9%
ChebyNet
N 0 2562 0 0 2562 19.4%
Y 45 13137 7 8 | 13197 99.9%
RGCN
N 0 1275 2 1 1278 9.7%
Y 47 13107 | 37 6 | 13197 99.7%
SchNet
N 0 162 0 0 162 1.2%

S8. Generalization experiment results

The total number of molecules with different structures is 4906 in the Perkinson et al. screened SF



molecules dataset2?. The molecules contain elements H, C, O, N, S, F, Cl, Br, B, P, Si, and the

molecule size can reach 150. Since the molecule is larger than QM-symex (no more than 90 atoms),

the elements are more various, and the training set (4404 molecules) is much smaller, the

prediction difficulty in predicting SF in this dataset is much higher compared with QM-symex and

QM9. We use the method as described in QM-symex®® to calculate all properties needed in the

catalyst. The models and training process have the same configuration as in Section S4, except the

batch size is set to 16. Since the molecules are much larger, the graphic memory is not enough for

some models if the batch size is set to 32. The prediction result for Perkinson et al.’s dataset using

various models is shown in Table S8, S9, and S10.

Table S8: The physical error for various properties with/without catalyst. In column

“Catalyst”, “N” represents no catalyst endorsed, while “Y” represents catalyst endorsed. Better is
in bold.

Model Catalyst v UO i G “gap | “Homo | FLumo ES ET AE Ef

eV eV eV eV eV eV eV eV eV eV eV
Y 79.842 79.842 | 79.842 | 79.848 | 0.255 | 0.254 | 0.259 | 0.105 | 0.077 | 0.067 | 0.109
ocn N 994.778 | 697.599 | 68.457 | 968.204 | 0.255 | 0.254 | 0259 | 0.126 | 0.102 | 0.099 | 0.138
Y 70.791 70.791 | 70.791 | 70.791 | 0.255 | 0.256 | 0.260 | 0.146 | 0.096 | 0.097 | 0.142
oAT N 705.417 | 832.032 | 94.017 | 803.487 | 0.254 | 0.253 | 0.258 | 0.208 | 0.164 | 0.162 | 0.217
Y 97.013 97.013 | 97.013 | 97.013 | 0.254 | 0.254 | 0.259 | 0.148 | 0.108 | 0.098 | 0.159
o N 906.400 | 816.018 | 86.746 | 890.006 | 0.255 | 0.255 | 0.259 | 0.203 | 0.157 | 0.157 | 0.216
Y 14.813 14.152 14.815 13.716 | 0.255 | 0.255 | 0.259 | 0.211 | 0.157 | 0.142 | 0.220

ChebyNet

N 1,081.176 | 736.652 | 21.086 | 786.228 | 0.255 | 0.254 | 0.259 | 0.313 | 0.251 | 0.233 | 0.319
Y 245.362 | 245.362 | 245.362 | 245366 | 0.254 | 0.255 | 0.259 | 0.215 | 0.148 | 0.133 | 0.213
G N 826.467 | 1,025.906 | 232.697 | 1,046.386 | 0.260 | 0.260 | 0.265 | 0.262 | 0.207 | 0.188 | 0.274
Y 39.136 39.131 | 39.136 | 39.145 | 0.255 | 0.255 | 0.259 | 0.186 | 0.138 | 0.126 | 0.204
MPNN N 595.265 | 909.041 | 33.943 | 902.823 | 0.254 | 0.254 | 0.258 | 0.248 | 0.205 | 0.181 | 0.270
Y 59.300 59.303 | 59.300 | 59.260 | 0.256 | 0.255 | 0.260 | 0.090 | 0.057 | 0.067 | 0.097
roen N 626.588 | 1,044.292 | 70.394 | 755.135 | 0.255 | 0.254 | 0.259 | 0.155 | 0.128 | 0.120 | 0.167
Y 93.346 93.344 | 93.346 | 93.440 | 0.255 | 0.254 | 0.259 | 0.129 | 0.090 | 0.093 | 0.135
schhet N 773359 | 821.539 | 73.966 | 764310 | 0.254 | 0.254 | 0.259 | 0.171 | 0.134 | 0.144 | 0.182




Table S9: The ratio of non-physical reliable prediction. (Better is in bold).

Model Catalyst u uo G orbit excited all

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ChebyNet
N 45.42% 44.02% 49.00% 0.00% 0.00% 83.07%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GAT
N 61.95% 59.56% 58.96% 0.00% 0.00% 96.02%
Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GCN

N 42.03% 58.17% 58.96% 0.00% 0.00% 90.44%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
GGNN

N 30.48% 36.45% 35.86% 0.00% 0.00% 62.75%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GIN

N 55.98% 32.87% 41.63% 0.00% 0.00% 84.26%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MPNN

N 44.42% 63.15% 56.57% 0.00% 0.00% 93.43%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RGCN

N 17.73% 53.19% 26.49% 0.00% 0.00% 69.32%

Y 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
SchNet

N 56.97% 60.96% 55.58% 0.00% 0.00% 91.43%

Table S10: The detailed prediction results for singlet fission. (Better in bold)

Model Catalyst | TP | TN | FP | FN | Valid | Accuracy
Y 16 | 475 | 5 6 502 97.8%
GAT
N 0 18 0 2 20 3.6%
Y 15 | 477 | 3 7 502 98.0%
GCN
N 5 42 0 1 48 9.4%
Y 0 |480| O 22 | 502 95.6%
GGNN
N 0 |184 | O 3 187 36.7%
GIN Y 7 | 478 | 2 15 | 502 96.6%
N 0 78 0 1 79 15.5%
Y 5 1480 | O 17 | 502 96.6%
MPNN
N 0 33 0 0 33 6.6%
Y 17 | 477 3 5 502 98.4%
ChebyNet
N 3 80 1 1 85 16.5%
Y 17 | 477 3 5 502 98.4%
RGCN
N 148 1 1 154 30.3%
Y 480 0 19 502 96.2%
SchNet
N 40 0 0 43 8.6%

S9. Detailed discussion

We could give some analysis for Cat-DNNs scheme from the deep learning aspect. Traditional MTL
methods will not consider the correlation of the predicted properties explicitly. Researchers hope



to find the correlation among properties on the DNN model itself, even though the DNN with one
output layer with “squashing” activation can approximate any Borel measurable function?l,
However, limited by the cragged loss curve and stochastic gradient descent optimization method,
more complex DNN architectures are needed to obtain a better approximation for different tasks.

On guantum-mechanic tasks like molecular properties prediction, the correlation of some
properties is easy to be theoretically determined as introduced above. The endorsed catalysts
reduce the search space of the DNN models, so that the loss can be easier optimized to a better
minima. For example, to predict energy properties U, UpH, G, the traditional models need to find
out the correlation between energy and molecular structure 4 times, some of the model
parameters are duplicated, and the fitting ability is limited. Added the catalysts, the correlation
of energy and molecular could be only considered once and the saved parameters can be used to
fit the difference of various properties, like the gap between Yo and U, which is much easier than
fitting the correlation of molecular 3D structure to energy property once more.
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