Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

This journal is $\ensuremath{\mathbb{C}}$ the Owner Societies 2021

Competitive tetrel bond and hydrogen bond in benzaldehyde-CO₂:

Characterization by rotational spectroscopy

Hao Wang, ^a Xiujuan Wang, ^a Xiao Tian, ^a Wanying Cheng, ^a Yang Zheng, ^a Daniel Obenchain ^b Xuefang Xu^a and Qian Gou*a,c

^{*a*} School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.

b Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.

^{*c*} Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331, Chongqing, China.

Corresponding Authors

* Qian Gou: <u>qian.gou@cqu.edu.cn;</u>

Contents:

- **1.** Table S1. The calculated spectroscopic parameters of the three isomers of the BA-CO₂ complex at different levels of theory.
- 2. Table S2. Measured intensities (in arbitrary units) of the two isomers for several μ_a -type selected transitions.
- **3.** Tables S3-4. Partial *r*₀ and B3LYP-D3(BJ)/6-311++G(d,p) calculated geometries of isomers I and II of BA-CO₂.
- **4.** Tables S5-8. NBO energies (> 0.2 kJ mol⁻¹) of complexes between CO₂ and different molecules with aldehyde group (including H₂CO-CO₂, FM-CO₂, BA-CO₂-I, BA-CO₂-II) at the RHF/aug-cc-pVTZ level.
- **5.** Tables **S9-10.** Experimental transition frequencies of the observed isomers (I and II) of benzaldehyde-CO₂ (BA-CO₂).

			A/B/C MHz	Max ^{<i>a</i>} (%)	ΔE_0 /cm ⁻¹	$\Delta E_{0,\mathrm{BSSE}}/\mathrm{cm}^{-1}$		
	I		3652.812/403.737/363.	3652.812/403.737/363.943				
	EAP	II	2541.70/503.5558/421.	2541.70/503.5558/421.4520				
		Ι	3616/401/361	1.6%	0	0		
	6-311++G(d,p)	II	2488/506/420	-2.1%	17	29		
		III	1173/1082/241		543	631		
MD2		I	3644/410/369	1.6%	0	0		
WII 2	aug-cc-pVTZ	II	2525/516/429	2.6%	84	126		
		III	1224/1095/759	-	417	593		
		Ι	3672/407/366	0.8%	0	0		
	6-311++G(d,p)	II	2545/513/427	1.8%	47	53		
		III	1151/1075/738		138	196		
B3LYP-D3(BJ)		I	3681/407/366	0.8%	0	0		
	aug-cc-pVTZ	II	2546/513/426	1.8%	61	76		
		III	1160/1070/733	-	167	190		
		Ι	3702/418/376	3.3%	0	0		
	6-311++G(d,p)	II	2657/517/733	3.3%	137	149		
		III	1240/1098/770		179	268		
M06-2X		I	3709/418/376	4.5%	0	0		
	aug-cc-pVTZ	II	2643/515/431	4.0%	157	175		
		III	1235/1099/765	-	298	345		

Table S1. The calculated spectroscopic parameters of the three isomers of the BA-CO₂ complex at different levels of theory.

^{*a*} The values in parentheses are percentage differences defined as: $100\% \times (experimental-theoretical)/experimental.$

Transition	Isomer	Frequency (MHz)	Intensity
0,7	Ι	6111.0790	0.0488
$o_{08} \leftarrow 7_{07}$	II	7211.4173	0.0358
9 7	Ι	5975.1630	0.0442
$\delta_{18} \leftarrow /_{17}$	II	7028.2600	0.0165
0 9	Ι	6865.9630	0.0194
$9_{09} \leftarrow 8_{08}$	II	8409.4478	0.0146
10 11	I	9112.0734	0.0290
$12_{012} \leftarrow 11_{011}$	II	10589.8151	0.0137
12 11	I	8949.7003	0.0522
$12_{112} \leftarrow 11_{111}$	II	10476.5107	0.0164
12 12	I	9854.2714	0.0192
$13_{013} \leftarrow 12_{012}$	II	11424.3947	0.0171
$13_{1\ 13} \leftarrow 12_{0\ 12}$	I	9691.3632	0.0396
	II	11331.5250	0.0141

Table S2. Measured intensities (in arbitrary units) of the two observed isomers for several μ_a -type selected transitions.

Bond ler	ngths (Å)	Valence as	ngles (°)	Dihedral an	igles (°)
C1O2	1.163				
C1O3	1.159	O2C1O3	177.1		
C1O4	2.804(7) ^a	O3C1O4	93.3(1)	04C10302	180.0
O4C5	1.214	C1O4C5	112.1	O2C1O4C5	0.0
C5C6	1.475	O4C5C6	124.7	C1O4C5C6	180.0
C6C7	1.398	C5C6C7	119.3	C4C5C6C7	-180.0
C7O8	1.392	C6C7O8	120.1	C5C6C7O8	180.0
C8C9	1.394	C7O8C9	119.6	C6C7O8C9	0.0
C9O10	1.398	O8C9O10	120.4	C7O8C9O10	0.0
C6C11	1.401	C7C6C11	120.0	C8C7C6C11	0.0
C11H12	1.083	C6C11H12	118.7	C7C6C11H12	180.0
C10H13	1.084	C9C10H13	119.9	C8C9C10H13	-180.0
C9H14	1.084	C8C9H14	119.8	C7C8C9H14	-180.0
C8H15	1.083	C9C8H15	120.1	C10C9C8H15	-180.0
C7H16	1.085	C8C7H16	120.3	C9C8C7H16	180.0
C5H17	1.108	O6C5H17	115.1	C7O6C5H17	0.0

Table S3. Partial r_0 and B3LYP-D3(BJ)/6-311++G(d,p) calculated geometries of isomer I.

^{*a*} Error in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their theoretical values are 2.788 Å and 94.87°, respectively.

Bond let	ngths (Å)	Valence a	ngles (°)	Dihedral ar	ngles (°)
C1O2	1.163				
C1O3	1.159	O2C1O3	177.8		
C1O4	2.893(9) ^a	O3C1O4	90.7(3)	O4C1O3O2	180.0
O4C5	1.213	C104C5	151.5	02C104C5	0.0
C5C6	1.476	O4C5C6	125.3	C1O4C5C6	0.0
C6C7	1.399	C5C6C7	119.1	C4C5C6C7	-180.0
C7O8	1.394	C6C7O8	120.2	C5C6C7O8	180.0
C8C9	1.394	C7O8C9	119.6	C6C7O8C9	0.0
C9O10	1.398	O8C9O10	120.4	C7O8C9O10	0.0
C6C11	1.401	C7C6C11	120.0	C8C7C6C11	0.0
C11H12	1.082	C6C11H12	119.1	C7C6C11H12	180.0
C10H13	1.084	C9C10H13	119.9	C8C9C10H13	180.0
C9H14	1.084	C8C9H14	119.8	C7C8C9H14	-180.0
C8H15	1.083	C9C8H15	120.1	C10C9C8H15	-180.0
C7H16	1.085	C8C7H16	120.3	C9C8C7H16	180.0
C5H17	1.108	O6C5H17	115.1	C7O6C5H17	0.0

Table S4. Partial r_0 and B3LYP-D3(BJ)/6-311++G(d,p) calculated geometries of isomer II.

^{*a*} Error in parentheses in units of the last digit. The parameters in bold have been adjusted to reproduce the experimental values of rotational constants. Their theoretical values are 2.871 Å and 90.5°, respectively.

Donor NBO	Acceptor NBO	E (kJ mol ⁻¹)	Complexes
Fr	om H ₂ CO to CO ₂		
σ(1) C1 - H3	RY*(7) C4	0.38	
σ(1) C1 - O5	RY*(1) C4	0.75	
σ(1) C1 - O5	RY*(5) C4	0.21	
LP (1) O5	RY*(5) C4	0.38	— — — — — — — — — —
LP (1) O5	RY*(7) C4	0.25	3-1
LP (1) O5	$\pi^*(3) C4 - O6$	1.80	4
LP (2) O5	RY*(6) C4	0.25	
LP (2) O5	$\pi^*(3) C4 - O6$	4.69	
Fr	om CO_2 to H_2CO		
LP (2) O7	σ*(1) C1 - H2	0.38	
LP (2) O7	σ*(1) C1 – H3	0.46	

Table S5 NBO energies (> 0.21 kJ mol⁻¹) of the H_2CO-CO_2 complex.

Donor NBO	Acceptor NBO	E (kJ mol ⁻¹)	Complexes
F	from FM to CO ₂		
σ(1) C4 – H5	RY*(6) C1	0.29	
σ(1) C4 – H5	RY*(9) C1	0.59	
$\pi(1) C4 - O6$	$\pi^*(1) C1 - O3$	0.21	
$\pi(2) C4 - O6$	RY*(1) C1	0.67	
$\pi(2) C4 - O6$	RY*(5) C1	0.25	
σ(1) C4 – N7	RY*(5) C1	0.21	
LP (1) O6	RY*(5) C1	0.92	
LP (1) O6	RY*(3) O3	0.21	<u> </u>
LP (1) O6	RY*(4) O3	0.25	74
LP (1) O6	$\pi^*(3) C1 - O3$	2.51	
LP (2) O6	RY*(6) C1	0.50	🤍 🔮 🛕
LP (2) O6	$\pi^*(3) C1 - O3$	6.90	
F	from CO ₂ to FM		
$\pi(1) C1 - O2$	RY*(1) C4	0.25	
$\pi(1) C1 - O2$	RY*(4) C4	0.33	
LP (1) O2	$\sigma^*(1) C4 - H5$	0.92	
LP (1) O2	$\sigma^{*}(1) C4 - N7$	0.25	
LP (2) O2	$\sigma^*(1) C4 - H5$	0.80	
LP (2) O2	$\sigma^{*}(1) C4 - N7$	0.24	

Table S6. NBO energies (> 0.21 kJ mol⁻¹) of the FM-CO₂ complex.

Donor NBO	Acceptor NBO	E (kJ mol ⁻¹)	Complexes
F	From BA to CO ₂		
σ(1) C3 – C12	RY*(5) C15	1.76	
$\pi(1) C12 - O14$	RY*(1) C15	0.54	
$\pi(1) C12 - O14$	RY*(5) C15	0.29	
$\pi(1) C12 - O14$	RY*(3) O16	0.29	
$\pi(2) C12 - O14$	LP*(2) C15	0.25	
LP (1) O14	$\pi^*(1) C15 - O16$	3.01	
LP (1) O14	RY*(5) C15	0.59	7 8
LP (1) O14	RY*(3) O16	0.25	1 2 13 1
LP (2) O14	$\pi^*(1) C15 - O16$	8.66	1 6 3 12 15
LP (2) O14	RY*(7) C15	0.33	
F	From CO ₂ to BA		10 9
$\pi(1) C15 - O17$	RY*(1) C12	0.25	
$\pi(1) C15 - O17$	RY*(5) C12	0.25	
$\pi(1) C15 - O17$	RY*(3) H13	0.21	
LP (1) O17	RY*(3) H13	1.67	
LP (1) O17	σ*(1) C12 – H13	0.25	
LP (2) O17	$\sigma^{*}(1) C3 - C12$	0.67	
LP (2) O17	$\sigma^{*}(1) C12 - H13$	0.29	

Table S7. NBO energies (> 0.21 kJ mol⁻¹) of the BA-CO₂-I complex.

Donor NBO	Acceptor NBO	E (kJ mol ⁻¹)	Complexes
F	From BA to CO ₂		
σ(1) C3 – C4	RY*(5) O16	0.33	
σ(1) C4 – C5	RY*(6) C15	0.25	
$\pi(1) C12 - O14$	RY*(4) C15	0.25	
$\pi(1) C12 - O14$	RY*(5) C15	0.75	
$\pi(1) C12 - O14$	RY*(6) C15	0.33	7 0
$\pi(1) C12 - O14$	RY*(3) O17	0.29	
$\pi(2) C12 - O14$	RY*(7) C15	0.21	13
LP (1) O14	$\pi^*(1) C15 - O16$	3.68	1)-6 3-12
LP (1) O14	RY*(5) C15	0.38	5
LP (1) O14	RY*(3) O17	0.33	10 9
LP (2) O14	$\pi^*(1) C15 - O16$	1.72	
F	From CO ₂ to BA		15-17
$\pi(1) C15 - O17$	RY*(2) H9	0.21	
LP (1) O16	RY*(1) H9	1.42	
LP (1) O16	RY*(3) H9	0.25	
LP (1) O16	σ*(1) C4 – H9	1.97	
LP (2) O16	RY*(1) H9	1.38	
LP (2) O16	σ*(1) C4 – H9	2.55	

Table S8. NBO energies (> 0.21 kJ mol⁻¹) of the BA-CO₂-II complex.

Trar	nsition	w/MHz	4./1/11/7
J' K _a ' K _c '	$\leftarrow J'' K_a'' K_c''$	V/1 V111Z	217/ 112
8 0 8	7 0 7	6111.0812	0.6
8 1 8	7 1 7	5975.1636	-0.1
8 1 7	7 1 6	6292.9963	0.7
9 0 9	8 0 8	6865.9630	-1.5
9 1 9	8 1 8	6719.9006	-1.2
9 1 8	8 1 7	7077.0880	-0.6
9 2 8	8 2 7	6902.4601	0.5
927	8 2 6	6945.4757	-1.4
9 3 7	8 3 6	6914.5910	-0.9
9 3 6	8 3 5	6915.5479	0.2
9 4 6	8 4 5	6912.4970	3.9
9 5 5	8 5 4	6911.4014	-1.4
10 010	9 0 9	7617.8733	10.2
10 1 9	9 1 8	7860.2267	-0.9
10 2 9	9 2 8	7667.4534	-1.1
10 2 8	927	7726.1991	0.9
10 3 8	937	7684.0042	-0.9
10 3 7	936	7685.6411	-0.8
10 4 7	9 4 6	7681.2882	8.3
10 5 6	9 5 5	7679.7843	-0.1
11 0 11	10 010	8366.5989	-1.0
11 1 10	10 1 9	8642.2713	-1.6
11 2 10	10 2 9	8431.8347	-2.8
11 2 9	10 2 8	8509.4497	-1.7
11 3 9	10 3 8	8453.6988	0.0
11 3 8	10 3 7	8456.3536	-1.2
11 4 8	10 4 7	8450.2944	-1.3
11 4 7	10 4 6	8450.3308	1.5
11 5 7	10 5 6	8448.3051	-2.4
11 5 6	10 5 5	8448.3051	-2.6
12 0 12	11 0 11	9112.0737	-0.2
12 1 12	11 111	8949.7010	0.2
12 1 11	11 1 10	9423.0739	-0.3
12 2 11	11 2 10	9195.5493	0.3
12 2 10	11 2 9	9295.2720	-0.3
12 3 10	11 3 9	9223.6655	0.1
12 3 9	11 3 8	9227.7880	-1.0
12 4 9	11 4 8	9219.5607	-0.8

Table S9. Experimental transition frequencies v of the parent species of isomer I with quantum numbers and difference to calculated frequencies Δv in the least squares fit.

12 4 8	11 4 7	9219.6239	-0.6
12 5 8	11 5 7	9216.9866	0.3
12 5 7	11 5 6	9216.9866	-0.2
12 6 7	11 6 6	9215.6301	-1.7
12 6 6	11 6 5	9215.6301	-1.7
13 0 13	12 0 12	9854.2713	0.0
13 1 13	12 1 12	9691.3638	0.4
13 1 12	12 1 1 1	10202.4701	0.2
13 2 12	12 2 11	9958.5302	-0.5
13 2 11	12 2 10	10083.6078	-0.6
13 3 11	12 3 10	9993.8902	1.8
13 3 10	12 3 9	10000.0581	-0.6
13 4 10	12 4 9	9989.0970	-0.6
13 4 9	12 4 8	9989.2095	0.0
13 5 9	12 5 8	9985.8371	2.1
13 5 8	12 5 7	9985.8371	1.1
14 0 14	13 0 13	10593.2724	1.2
14 1 14	13 1 13	10432.1808	0.3
14 1 13	13 1 12	10980.2868	0.1
14 2 13	13 2 12	10720.7259	0.8
14 2 12	13 2 11	10874.3128	0.4
14 3 12	13 3 11	10764.3413	-0.9
14 3 11	13 3 10	10773.2894	0.0
14 4 11	13 4 10	10758.9229	-0.2
14 4 10	13 4 9	10759.1124	-0.8
14 5 10	13 5 9	10754.8679	0.3
14 5 9	13 5 8	10754.8679	-1.7
15 0 15	14 0 14	11329.2448	-0.4
15 1 15	14 1 14	11172.1391	-0.3
15 1 14	14 1 13	11756.3395	0.1
15 2 14	14 2 13	11482.0759	-0.3
15 2 13	14 2 12	11667.1426	0.0
15 3 13	14 3 12	11534.9924	0.2
15 3 12	14 3 11	11547.6180	-0.5
15 4 12	14 411	11529.0563	0.6
15 4 11	14 4 10	11529.3688	2.4
15 511	14 5 10	11524.1003	1.9
15 5 10	14 5 9	11524.1003	-1.9
2 2 1	1 1 0	11322.3520	-0.4
2 2 0	1 1 1	11362.5134	1.4
3 2 1	3 1 2	9689.5499	-0.7
3 2 2	3 1 3	9926.5071	-2.2
3 2 2	2 1 1	12050.2338	0.6

3 2 1	2 1 2	12171.4387	0.1
3 3 0	3 2 1	16343.1653	1.0
3 3 1	3 2 2	16344.9780	-0.7
3 3 1	2 2 0	18647.6492	-0.4
4 1 4	3 0 3	6141.5701	2.3
4 2 2	4 1 3	9614.0438	1.6
4 2 3	4 1 4	10006.5402	-0.2
4 2 3	3 1 2	12758.1591	-0.1
4 2 2	3 1 3	13002.3821	-0.2
4 3 1	4 2 2	16340.5505	-0.3
4 3 2	4 2 3	16345.9826	-1.6
5 1 5	4 0 4	6811.8132	1.0
5 2 3	5 1 4	9522.6144	-2.3
5 2 4	5 1 5	10106.7915	-0.2
5 2 4	4 1 3	13446.1632	-0.9
5 2 3	4 1 4	13856.8153	-0.1
5 3 2	5 2 3	16335.3754	0.8
5 3 3	5 2 4	16348.0216	-0.3
6 1 6	5 0 5	7464.4997	-0.3
6 2 4	6 1 5	9417.2479	1.6
6 2 5	6 1 6	10227.3944	0.7
6 2 5	5 1 4	14114.3177	-0.6
6 2 4	5 1 5	14736.5861	-0.3
6 3 3	6 2 4	16326.3874	0.2
6 3 4	6 2 5	16351.6009	0.0
7 1 7	6 0 6	8100.9209	-0.5
7 2 5	7 1 6	9300.2901	2.0
7 2 6	7 1 7	10368.4918	-0.1
7 2 6	6 1 5	14762.7334	-0.1
7 2 5	6 1 6	15643.9019	-0.2
7 3 4	7 2 5	16312.1231	0.4
7 3 5	7 2 6	16357.3218	0.8
8 1 8	7 0 7	8722.6342	-1.6
8 2 6	8 1 7	9174.4690	0.5
8 2 7	8 1 8	10530.2401	-1.0
9 1 9	8 0 8	9331.4563	-0.7
927	9 1 8	9042.8567	-0.4
9 2 8	9 1 9	10712.8007	1.8
10 1 10	9 0 9	9929.4281	0.8
10 2 9	10 1 10	10916.3183	-0.3
11 111	10 0 10	10518.7788	0.3
12 1 12	11 011	11101.8777	-1.7

Transition v/MHz $\Delta v/kHz$ $J^{\prime\prime}K_a^{\prime\prime}K_c^{\prime\prime}$ $J' K_a' K_c'$ ← 5467.1305 -0.4 6 0 6 0.8 5285.4426 5775.5132 -0.5 0.5 5621.8333 5539.0510 -0.1 5562.1686 -1.7 5564.6811 1.0 6345.2585 -0.2 -0.9 6158.4027 0.6 6727.4386 6585.5987 0.1 6456.0615 2.2 6498.0788 0.0 6492.4503 -2.0 0.2 6487.2249 0.4 6487.1424 7211.4172 -0.2 7028.2606 0.0 7673.8018 0.0 7370.248 -0.3 7558.4062 -0.1 7423.6745 0.4 7434.8644 0.4 7416.9997 -0.7 7417.2270 -0.5 7412.0393 3.0 7412.0393 0.9 0.7 8066.7358 7894.9308 -0.2 8613.3740 0.1 8281.2464 -0.2 1.5 8538.6692 8355.6105 2.1 3 6 8375.9554 1.0 8348.0550 -2.4 8348.5997 -1.4 8341.0452 -2.8

Table S10. Experimental transition frequencies v of the parent species of isomer II with quantum numbers and difference to calculated frequencies Δv in the least squares fit.

9 5 4	8 5 3	8341.0573	2.5
10 010	9 0 9	8913.2442	0.5
10 1 10	9 1 9	8758.4392	0.9
10 1 9	9 1 8	9544.7937	-0.4
10 2 9	9 2 8	9188.7053	-0.6
10 2 8	9 2 7	9523.8565	-1.6
10 3 8	9 3 7	9287.9235	0.5
10 3 7	9 3 6	9322.3947	-1.5
10 4 7	9 4 6	9280.4135	1.4
10 4 6	9 4 5	9281.5855	-0.4
11 0 11	10 010	9753.4465	-0.8
11 111	10 1 10	9618.8992	-0.8
11 1 10	10 1 9	10466.6194	0.9
11 2 10	10 2 9	10092.3100	0.1
11 2 9	10 2 8	10510.9346	-0.1
11 3 9	10 3 8	10220.1901	-2.6
11 3 8	10 3 7	10275.3146	-0.9
12 0 12	11 011	10589.816	0.7
12 1 12	11 111	10476.5108	-0.5
12 1 11	11 1 10	11377.4141	-0.2
12 2 11	11 2 10	10991.7828	-1.0
12 2 10	11 2 9	11496.8291	0.8
12 3 10	11 3 9	11151.9168	0.6
12 3 9	11 3 8	11235.8205	-1.5
13 0 13	12 0 12	11424.3955	0.9
13 1 13	12 1 12	11331.5253	0.9
13 1 12	12 1 1 1	12275.9160	0.4
13 2 12	12 211	11886.9055	0.6
13 2 11	12 2 10	12478.8149	1.8
13 3 11	12 3 10	12082.5426	3.9
13 3 10	12 3 9	12204.851	1.4
14 0 14	13 0 13	12258.6383	-0.4
14 1 14	13 1 13	12184.2267	-0.4
14 1 13	13 1 12	13161.2364	-1.3
14 2 13	13 2 12	12777.5120	-0.6
14 2 12	13 2 11	13454.6579	-2.2
15 0 15	14 0 14	13093.4292	1.5
15 1 15	14 114	13034.9200	-1.7