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Supplementary Text 
1. Comparison of Y matrix obtained from different kinetic lumping methods 

In this section, we present the underlying Y matrices that are used to compute the Y loss of 
the corresponding cases, namely the Alanine Dipeptide (lagtime of 5ps), 2D potential 
(lagtime of 3000 saving intervals), and RNAP (lagtime of 90ns) respectively (Fig. S1a-S1c). 
We used the deep blue colour to represent 𝑦!" = 1 and light blue to represent 𝑦!" = 0. 

For the Alanine Dipeptide case (Fig. S1), all methods result in a Y matrix with close 
resemblance to the identity matrix, with the diagonal elements all close to 1 and off-diagonal 
elements all close to 0. In fact, RPnet, PCCA+ and MPP give exact same lumping results, and 
so their Y matrices are also the same. 

For the 2D potential system (Fig. S2), the Y matrix corresponding to RPnet has larger 
diagonal elements and smaller off-diagonal elements when compared to that resulted from 
the PCCA+, consistent with the better state boundary partitioning of RPnet. 

For the case of RNAP (Fig. S3), the Y matrix of RPnet is again closest to identity matrix. It 
can also be seen that the Y matrix corresponding to hierarchical clustering with Ward linkage 
actually has a mixing between the third and fourth eigenvectors, which correspond to the 
erroneous state partitioning shown in FIG. 5. 

2. Comparison of the implied timescales of macrostate-MSMs generated by different 
kinetic lumping methods 

Fig. S4 shows the implied timescale of the 2D potential dataset. Panel (a) presents the 9 
slowest implied timescales of the microstate model. The implied timescales of the lumped 
macrostate models from RPnet and PCCA+ are shown in panel (b) and (c), respectively.  As 
shown in Fig. S4, the implied timescales obtained from 4-macrostate MSMs generated by 
RPnet and PCCA+ are both consistent with the three slowest implied timescales predicted by 
the microstate-MSM.   

3. Stability of RPnet in different lagtime 

We have presented in the main text that our RPnet method performs better than other 
methods in several specific lag times. We will hereby show that our RPnet approach is also 
robust, where Y-loss is always low and stable.  Fig. S5 displays the Y-loss values computed 
at different lag times in the three systems. In order to demonstrate the stability in the 
performance of RPnet, we compare our method to the PCCA+. The result demonstrates that 
Y-loss of RPnet is significantly less sensitive to the value of the lag time compared to 
PCCA+. Furthermore, we show that the Y-loss values of RPnet are always lower than those 
from PCCA+, even though PCCA+ can achieve comparable performance with RPnet in some 
specific lag times (see Fig. S5). 

4. Performance of RPnet with number of macrostates 

In this section, we examined the performance of our RPnet method by varying number of 
macrostates: i.e.,	𝑁 = 2,6	for 1D-potential,	𝑁 = 3	for alanine dipeptide, 𝑁 = 2,5 for RNAP. 

For the 1D potential, we have performed two different manual partitioning and examine the 
Y-loss in each case. we show that when N=2 (with the state boundary correctly located at the 
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highest energy barrier, see the left panel of Fig. S6(b)), the reverse projected modes and the 
original microstate eigenmodes are still in good agreement (see Fig. S6(b)). However, when 
N=6, several state boundaries split energy basins (indicating poor metastability of the lumped 
macrostate model).  In this case, we observer a large discrepancy between the original and 
reverse projected ones, especially for fast modes (Fig. S7). 

Also, for the alanine dipeptide with N=3, we show the three macrostates obtained from our 
RPnet in Fig. S8(b).  Our RPnet indeed yields 3 macrostates that can still reasonably separate 
the metastable regions. In particular, two macrostates (in green and orange, see Fig. S8(d)) in 
the 4-state model are merged (in green, see Fig. S8(b)). 

For the RNAP with N=2,5, as shown in Fig. S9, our RPnet method yields similar state 
boundaries with PCCA+ when N=2 (Fig. S9(a) v.s. Fig.S9(d)) and N=5 (Fig. S9(c) v.s. 
Fig.S9(f)). When comparing the Y-loss values of various macro-state models obtained from 
RPnet with different N, we show that the Y-loss value for N=4 (Y-loss=0.015) is lower than 
N=5 (Y-loss=0.029).  Interestingly, we also found that the model with N=2 generates a very 
small Y-loss value (Y-loss=0.002). We anticipate that the reason behind is that the binomial 
assignment when N=2 only captures one dynamic mode (the slowest mode), while other 
dynamic modes: e.g., the 2nd, 3rd (when N=4 and 5) or even the 4th (when N=5) slowest 
dynamic mode, may contribute to the increased Y-loss values when N=4 or 5.  
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Supplementary Figures: 
 

 

Fig. S1: The Y matrix of Alanine Dipeptide built with the lagtime of 5ps. The microstate 
model has 100 states, and the macrostate models have 4 states. In (a-d), the macrostate 
models are generated by RPnet, PCCA+, hierarchical clustering with Ward linkage, and MPP, 
respectively. 
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Fig. S2: The Y matrix of 2D-potential with the lag time of 3000 steps. The microstate 
model has 961 states while the macrostate models have 4 states. The macrostate models are 
generated by: (a) RPnet and (b) PCCA+, respectively. 
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Fig. S3: The Y matrix of RNAP with 90 ns lag time. The macrostate model has 100 states, 
while the macrostate models have 4 states. In (a-d), the macrostate models are generated by 
RPnet, PCCA+, MPP and hierarchical clustering with Ward linkage, respectively. 
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Fig. S4: The implied time scales of 2D potential system with different lag time. (a) The 
implied time scale of Microstates. (b) The implied timescale plots of the macrostate model 
generated by RPnet, (c) The implied time scale plots of the macrostate model generated by 
PCCA+. 
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Fig. S5: The Y-loss result with different lag time. (a) The Y-loss change in the Alanine 
Dipeptide. (b) The Y-loss change in the 2D potential. (c) The Y-loss change in the RNAP. 
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Fig. S6: Illustration of reverse projected modes in 1D potential with N=2. (a) Energy 
landscape 𝑉(𝑥)  and the corresponding microstate transition mode. (b) Reverse projected 
mode of the low-resolution lumping. It is clear from the Fig. that the reverse projected mode 
is smooth within each macrostate region, but at the boundaries between two macrostates, 
discontinuities could be present. 
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Fig. S7: Illustration of reverse projected modes in 1D potential with N=6. (a) Energy 
landscape 𝑉(𝑥) and the corresponding microstate transition modes. (b) Reverse projected 
modes of the lumping. It is clear from the Fig. that the reverse projected modes are smooth 
within each macrostate region, but at the boundaries between two macrostates, clear 
discontinuities could be present. It is also obvious that the fourth and fifth reverse projected 
modes failed to reproduce the original ones, indicating that the lumping is suboptimal. 
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Fig. S8: Lumping assignment in alanine dipeptide with N=3 and 4. Fig. (a) and (b) are the 
lumping assignments of PCCA+ and RPnet with N=3; Fig. (c) and (d) are the lumping 
assignments of PCCA+ and RPnet with N=4 (same as the two in the main text, shown here 
only for comparison). It is clear that when N changes from 4 to 3, RPnet gives a “low 
resolution” lumping that merges the green and the orange macrostates into one, and the state 
boundary still respects barriers of the underlying energy landscape. 
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Fig. S9: Lumping assignments for the RNAP system with N=2, 4 and 5. Fig. (a) and (d) 
are the lumping assignments of PCCA+ and RPnet (Y-loss: 0.002) with N=2; Fig. (b) and (e) 
are the lumping assignments of PCCA+ and RPnet (Y-loss: 0.015) with N=4 (also shown in 
main text); Fig. (c) and (f) are the lumping assignments of PCCA+ and RPnet (Y-loss: 0.029) 
with N=5.  
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Fig. S10: The change of Y-loss, GMRQ and metastability upon optimization. The change 
of Y-loss, GMRQ and metastability as a function of Epoch number throughout the 
optimization process for the three systems under study are shown. (a) Alanine dipeptide with 
N=4 and the lag time of 5ps. (b) 2D potential with N=4 and the lagtime of 3,000 saving 
intervals. (c) RNAP with N=4 and the lag time of 90ns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 


