Revisiting Thiophosphate Pb₃P₂S₈: A Multifunctional Material Combining a Nonlinear Optical Response and Photocurrent Response

Bingheng Ji^a, Elizabeth Guderjahn^a, Kui Wu^b, Tajamul Syed^c, Wei Wei^c, Bingbing Zhang,^{b*}

Jian Wang ^{a*}

^a Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260,

United States

^b College of Chemistry and Environmental Science, Hebei University, Key Laboratory of

Analytical Science and Technology of Hebei Province, Baoding 071002, China

^c Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260,

United States

Supporting information

- 1. Single crystal X-ray diffraction experimential details.
- 2. Figure S1. Kubelka-Munk Diffuse reflectance solid-state UV-Vis spectra of Pb₃P₂S₈.
- 3. Table S1. Selected crystal data and structure refinement parameters for $Pb_3P_2S_8$ at 300 K.
- 4. **Table S2.** The measured LDT of $Pb_3P_2S_8$ compared with AGS.
- 5. Figure S2. Calculated HSE bandgap of Pb₃P₂S₈.
- 6. **Figure S3.** Calculated charge density of the bottom of conduction band (left) and the top of the valance band (right).

Single Crystal X-ray Diffraction: Data collections were performed at room temperature for $Pb_3P_2S_8$ using a Bruker Kappa APEX II diffractometer with graphite monochromated Mo-*K* α radiation ($\lambda = 0.71073$ Å). Data reduction and integration, together with global unit cell refinements, were performed in the APEX2 software.¹ Multi-scan absorption corrections were applied.¹ The structures were solved by direct methods and refined by full matrix least-squares methods on F² using the SHELX package with anisotropic displacement parameters for all atoms.² In the last refinement cycles, the atomic positions for the three compounds were standardized using the program Structure TIDY.²⁻³

Figure S1. Kubelka-Munk Diffuse reflectance solid-state UV-Vis spectra of Pb₃P₂S₈.

Empirical formula	$Pb_3P_2S_8$				
Formula weight	939.99 g/mol	Unit cell volume	1304.1(4)Å ³		
Temperature	300(2) K	Ζ	4		
Radiation, wavelength	Mo-Kα, 0.71073 Å	Density (calc.)	4.788 g/cm ³		
Crystal system	Cubic	Absorption	40.133 mm ⁻¹		
Space group	<i>P2</i> ₁ <i>3</i> (No.198)	coefficient			
		Final R indices ^a	$R_1 = 0.0451$		
Unit cell dimensions	<i>a</i> =10.9253(10) Å	$[I\!\!>\!\!2\sigma_{(I)}]$	$wR_2 = 0.1066$		
		Final R indices ^a	$R_1 = 0.0891$		
		[all data]	$wR_2 = 0.1841$		
		G.O.F	1.116		

Table S1. Selected crystal data and structure refinement parameters for $Pb_3P_2S_8$ at 300 K

$$\begin{split} R_1 &= \sum ||F_o| - |F_c|| / \sum |F_o|; \ wR_2 = [\sum [w(F_o{}^2 - F_c{}^2)^2] / \sum [w(F_o{}^2)^2]]^{1/2}, \text{ and } w = 1 / [\sigma^2 F_o{}^2 + (A \cdot P)^2 + B \cdot P], P = (F_o{}^2 + 2F_c{}^2) / 3; \text{ A and B are weight coefficients} \end{split}$$

Table S2. The measured LDT of $Pb_3P_2S_8$ compared with AGS.

Compounds	Damage energy	Spot diameter	LDT	LDT (×AGS)
	(mJ)	(mm)	(MV/cm^2)	
AgGaS ₂	0.58	0.5	29.6	1
$Pb_3P_2S_8$	1.42	0.5	77.2	2.6

Figure S2. Calculated HSE bandgap of Pb₃P₂S₈.

Figure S3. Calculated charge density of the bottom of conduction band (left) and the top of the valance band (right).

References

- 1. Bruker APEX2; Bruker AXS Inc.: Madison, WI, 2005.
- 2. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 3. E. Parthé and L. M. Gelato, The standardization of inorganic crystal-structure data, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 1984, **40**, 169–183.